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Abstract

The surface composition of Titan is of great importance for understanding both the internal evolution of Titan and its atmosphere. The Visual
and Infrared Mapping Spectrometer (VIMS) investigation on Cassini is observing Titan from 0.35 to 5.11 µm with spatial resolution down to a
few kilometers during each flyby of the spacecraft as it orbits Saturn. Our search for spectral diversity using seven methane transmission windows
in the near infrared suggests that spectrally distinct units exist on the surface of Titan and that most of the surface can be modeled using only
a few distinct spectral units: water frost, CO2 frost, atmospheric scattering, and an unknown material bright at 2 µm. A dark, spectrally neutral
material is also implied. Use of an atmospheric scattering component with spectral mixing analysis may provide a method for partially removing
atmospheric effects. In some locations, atmospheric scattering accounts for the majority of the signal. There are also small regions with unusual
spectra that may be due to low signal and high noise and/or may be exotic materials of interest. Further, we searched within the methane windows
for spectral features associated with Titan’s surface. Only the 5-µm and, to a lesser extent, the 2-µm window provide a reasonable opportunity for
this, as the shorter-wavelength windows are too narrow and the 2.8-µm window is cluttered with an unknown atmospheric constituent. We find
evidence for only one spectral feature: near 4.92 µm for the 5-µm bright Tui Regio region. CO2 frost with grains smaller than about 10 µm is the
best candidate we have found so far to explain this absorption as well as the feature’s spectral contrast between the 2.7- and the 2.8-µm atmosphere
subwindows. This suggested CO2 identification is supported by the presence of an endmember in the spectral mixture analysis that is consistent
with CO2 frost with large grain sizes. We find no other absorption features that are statistically significant, including those reported earlier by
others. These results are consistent with but greatly extend our early analysis that treated only the Ta data set [McCord, T.B., et al., 2006a. Planet.
Space Sci. 54, 1524–1539]. In the spectral feature search process, we explored in detail the noise characteristics of the VIMS data within the 5-µm
window, which has generally very low signal (4–20 DN), due to the measurement conditions and low illumination levels. We find noise of nearly
Gaussian statistics except for some erratic darks and noise spikes, and the data set seems generally well behaved. We present examples of our
attempt to improve on the standard VIMS pipeline data calibration.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The composition of Titan’s surface was recently investigated
by reflectance spectrophotometry using some of the earliest
measurements of Titan from the Cassini mission Visual and In-
frared Mapping Spectrometer (VIMS) (McCord et al., 2006a,
2006b). A review of earlier work on the subject is included
in this previous publication. That history consists mostly of
several groundbased telescope spectroscopic studies of Titan,
culminating in the Griffith et al. (2003) study and showing that
the spectra are consistent with the presence of “dirty” water ice
such as is found on Ganymede. The VIMS data are the first
with significant (<1 to ∼10 km) spatial resolution on Titan.
The McCord et al. study reported that spectral properties of
dark areas are consistent with water ice containing a neutral
darkening material, but the bright regions are more varied and
are not consistent with any material considered. Organic mate-
rials, especially tholins, have been widely suggested to exist
on Titan (e.g., Cruikshank et al., 1991; Griffith et al., 2003;
Bernard et al., 2006), but no spectral evidence of them was
found.

We have extended this study using many more recent VIMS
data for Titan and we report here on our findings through
Titan flyby T23. We use two different approaches: (1) Spec-
tral Mixture Analysis (SMA) using I/F values averaged over
several spectral channels within seven atmospheric spectral
windows to determine the number and type of basic spectral
units present, and (2) a search for spectral absorption fea-
tures at VIMS full spectral resolution within the methane win-
dows.

The difficulty in studying Titan’s surface from space is
of course its thick, hazy and absorbing atmosphere. The at-
mosphere is approximately 1.5 bar pressure at the surface and
contains approximately 5% methane, which absorbs heavily in
the VIMS spectral range. Scattering particles also are present,
with their effect increasing toward shorter wavelengths. These
effects vary in space and time. Thus, the surface is visible only
within a few narrow, hazy spectral windows between strong
methane absorptions. Radiative transfer modeling of the at-
mosphere is a useful technique for reducing the haze effects
within the methane windows and for extending the useful edges
of the windows, but this approach is difficult because of the
strong effects of the scattering and absorption and their variabil-
ity with altitude and with location (cf. Griffith et al., 2003). The
Huygens probe measurements (Tomasko et al., 2005; Flasar et
al., 2005; Fulchignoni et al., 2005) greatly increased our knowl-
edge of these atmospheric effects, but only at one location and
time. Thus, atmospheric modeling remains in an early stage.
For this study, we do not attempt radiative transfer modeling
to remove atmospheric effects, although we provide a potential
alternative method for estimating the scattering contributions
within the methane windows.
2. Observations

We treat VIMS data sets ranging from flybys T03 to T23,
among the larger set of data available. The earlier McCord et al.
study treated only the Ta data set. These later data sets cover a
sufficient variety of regions and conditions to provide a much
better basis than the earlier study.

Although Cassini encounters Titan on almost every orbit of
Saturn, there is considerable competition for spacecraft data
storage and downlink capacity during these flybys, and the en-
counters are of short duration, so that the VIMS data collected
is limited. Further, celestial mechanics constrains the variety
of viewing geometries possible, limiting the Titan regions cov-
ered. In addition, because of the short duration of the encoun-
ters, limited observation time available for VIMS, low light
levels, and the competing desire for maximum areal coverage,
the signal-to-noise ratio of many of the data sets is low, espe-
cially at 5 µm (Table 1).

The data sets are first received by the VIMS investigation as
digital numbers (DN) for each spectral channel and pixel of spa-
tial resolution. These are as provided by the 12-bit analog-to-
digital converter in the instrument (Brown et al., 2004). These
DN values, after (lossless) data compression on-board and de-
compression on the ground, are then treated by the calibration
tables developed for the instrument, using ground and flight
measurements (Brown et al., 2004; McCord et al., 2004), to cal-
culate radiance, and then divided by the incident solar radiation
to calculate I/F , or radiance factor (e.g., Hapke, 1993). We use
these I/F values as provided by the VIMS “pipeline” or stan-
dard processing system, except where noted. This of course is
I/F for the scene at the top of the atmosphere and does not
yield directly the optical properties of the surface material, due
to atmospheric contributions. In most cases we use VIMS data
before spatial resampling for mosaicking or reprojecting onto a
map base, and we maintain knowledge of the original pixel DN
values to estimate signal and noise statistics.

3. Spectral units identity and diversity

3.1. Calibration and spectral windowing

We first searched for evidence of regions of distinct spectral
properties. Evidence was reported for the existence of spectral
units on the surface and two main compositional units were
identified, associated with bright areas and dark areas, plus sev-
eral areas of “unusual” spectral behavior (McCord et al., 2006a,
2006b; Rodriguez et al., 2006; Barnes et al., 2007), such as evi-
denced in spectral ratio images. These unusual areas include the
5-µm-bright regions such as that now called Tui Regio (Barnes
et al., 2005, 2006, 2007; McCord et al., 2006a, 2006b). In
McCord et al. (2006a, 2006b) spectra were extracted for these
units, an attempt was made to remove the atmosphere effects us-
ing radiative transfer models to obtain surface I/F , and these
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Table 1
The mosaic data sets used in the spectral feature search are described here. They were prepared by the German Space Center DLR (Jaumann et al., 2006)

Mosaic Sequence # Cube name Date Integration
(ms)

Average and DN
range 5 µm

TI019_HDAC001 S17 CM_1514302573 Dec-26-05 80 5.3, 1–24
CM_1514302990 Dec-26-05 320 21.9, 7–65
CM_1514304423 Dec-26-05 320 19.8, 7–57
CM_1514305926 Dec-26-05 640 41.9, 11–83
CM_1514309549 Dec-26-05 160 9.8, 2–a

CM_1514310267 Dec-26-05 160 9.1, 3–21
CM_1514313117 Dec-26-05 160 8.8, 3–23
CM_1514313835 Dec-26-05 160 10.2, 3–24
CM_1514315553 Dec-26-05 80 5.8, 1–31
CM_1514315913 Dec-26-05 80 5.5, 1–23
CM_1514316735 Dec-26-05 80 4.6, 2–47
CM_1514317135 Dec-26-05 80 5.0, 2–16

TI003_GLOBMAP001 S08 CM_1487118608 Feb-15-05 640 33.7, 11–55
CM_1487118864 Feb-15-05 640 40.2, 23–57
CM_1487119120 Feb-15-05 640 29.0, 21–44
CM_1487119376 Feb-15-05 640 39.7, 25–64
CM_1487119632 Feb-15-05 640 61.4, 43–73
CM_1487119937 Feb-15-05 640 68.6, 55–87
CM_1487120447 Feb-15-05 640 33.7, 24–53
CM_1487120702 Feb-15-05 640 52.3, 32–253
CM_1487120957 Feb-15-05 640 54.4, 41–64
CM_1487121258 Feb-15-05 640 51.4, 41–66
CM_1487121516 Feb-15-05 640 40.0, 29–52
CM_1487121774 Feb-15-05 640 35.0, 23–63
CM_1487122032 Feb-15-05 640 62.8, 31–81
CM_1487122290 Feb-15-05 640 72.9, 56–87
CM_1487122597 Feb-15-05 640 75.8, 55–137
CM_1487122854 Feb-15-05 640 68.9, 56–114
CM_1487123111 Feb-15-05 640 54.0, 28–71
CM_1487123368 Feb-15-05 640 47.9, 34–63
CM_1487123625 Feb-15-05 640 54.2, 48–66
CM_1487123925 Feb-15-05 640 50.0, 33–62
CM_1487124186 Feb-15-05 640 62.4, 50–76
CM_1487124708 Feb-15-05 640 62.5, 52–85
CM_1487124969 Feb-15-05 640 72.7, 48–146

a Saturation of the detector.
surface spectra were compared with laboratory spectra for can-
didate materials. In the present study, we treated many more
data sets, used an empirical model to remove atmosphere ef-
fects, searched for more spectral variety and attempted to map
the spectral units by taking into account potential spectral mix-
tures. In general, we are seeking a better measure of the spectral
diversity and its relationship to surface albedo and morphologic
features.

The method presented in this section is focused on the analy-
sis of the overall spectral shapes present in VIMS data. An
example spectrum is shown in Fig. 1, which is obtained by aver-
aging I/F values for 1.094 pixels in data set CM_1525118253
from sequence S20. The spectral range (0.8–5.1 µm) corre-
sponds to the VIMS IR channel. The peaks in the spectrum
are regions of least methane absorption, between the strong
methane bands, and where the surface I/F contribution is
greatest (marked by gray tone vertical bars in Fig. 1). Included
in this spectrum is the contribution of atmospheric particle scat-
tering, which is strongest at shorter wavelengths and decreases
almost to zero contribution at the 5-µm window. Images were
calculated for each window by averaging the several spectral
channels within the window to increase the signal-to-noise ratio
(SNR). Two-to-ten spectral channels are averaged within each
window (Table 2), the widest being the 5-µm window.

3.2. Data selection and registration

The purpose of our analysis is to identify the main spectral
units at the surface of Titan. This requires data from the largest
possible observed area, thus the highest possible number of im-
ages. However, because the VIMS data set has been acquired
under extremely diverse illumination and observation geome-
tries and instrumental modes, all the images are not useful or
comparable and should not be processed in the same way. When
a surface is poorly illuminated due to high solar incidence an-
gle, the signal to noise ratio is low, which enhances instrumental
artifacts. In addition, both high incidence and emergence angles
may enhance atmospheric-related effects. For these two rea-
sons, the pixels observed at incidence angle larger than 70 de-
grees (about 1/3 of the illumination flux at the sub-solar point
of the surface) and emission angle larger than 45 degrees are
masked. Masking is also applied to avoid erroneous data (i.e.,
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Fig. 1. Example spectrum for Titan from the VIMS infrared channels. The peaks in the spectrum correspond to the spectral regions between methane absorptions
where the surface is reachable. The seven longest wavelength windows are marked with vertical bands. The 2.8-µm window is composed of two subwindows maybe
due to a yet-unidentified absorption in the center (McCord et al., 2006a, 2006b).
Table 2
The spectral channels within each methane window that were averaged to pro-
duce the images analyzed for spectral diversity are given here

Minimum
wavelength (µm)

Maximum
wavelength (µm)

Number of averaged
channels

1.244920 1.278130 3
1.524210 1.590180 5
1.968710 2.067570 7
2.661460 2.696200 3
2.763050 2.781180 2
4.902650 5.074020 10

I/F less than 0 or greater than 1 for a given channel). When
this occurs, the whole spectrum is masked.

The data registration is checked by displaying the data on a
cylindrical projection map at 10 pixels per degree, where the
highest spatial resolution data are displayed in the foreground.
Several steps are necessary to build this mosaic, because of
errors in the spatial registration. These result from uncertain-
ties in the latitudes and longitudes provided by the pipeline
calibration. Mis-registration errors may be up to 8 degrees be-
tween images from different sequences, and up to 3 degrees
between images within the same sequence. To correct for these
errors, we first build a mosaic for each sequence of obser-
vation. These mosaics are compared to a global map of the
Imaging Science Subsystem (ISS) images of Titan (available
at http://ciclops.org/maps/maps.php) taken as a reference (gray
background in Fig. 2). This first comparison may enhance dif-
ferent errors within the same sequence. If these occur, each
sequence may be split in several parts and compared to the
reference, and finally corrected. A simple shift in latitude and
longitude is obvious in most of the cases, while rotation and
dilatation occur less often. When shifts in the two spatial di-
mensions are not sufficient, the data are discarded because a
correction in the navigation system would be more suitable in
such cases.

Finally, data homogeneity is reviewed visually by comparing
the images for the seven spectral windows within a mosaic, and
then between several mosaics. One or several image cubes of
a mosaic were removed when a high contrast occurs between
the edge of an image in the foreground and the image in the
background. This is probably due to effects that are highly sen-
sitive to the geometry of illumination and observation, or local
changes in time in the atmosphere. After data selection, the fi-
nal mosaic considered in this section (colored foreground in
Fig. 2) covers areas around the Shangri-La and Fensal regions
of Titan’s anti- and sub-saturnian hemispheres, respectively.
The data displayed have been divided by the cosine of the in-
cidence angle in order to scale the illumination of the surface
to a normal incidence, and to make the data more comparable.
A large part of the surface of Titan has been masked because
of insufficient illumination and therefore very low SNR due to
being near a terminator or limb, as discussed above.

3.3. Spectral Mixture Analysis method

This approach is focused on the analysis of the global shape
of spectra and the combination of spectra to explain this shape.
The Spectral Mixture Analysis (SMA) approach is suited to
the deconvolution of spectra, given a set of spectral compo-
nents. The technique we use here is based on linear combi-
nations of spectra that describe macroscopic mixtures (Adams
and McCord, 1971; Nash and Conel, 1974; Singer and Mc-
Cord, 1979). While non-linear spectrum mixtures are expected
to occur in VIMS data, the purpose of the SMA approach is to
separate mixtures of constituents and map their relative varia-
tions (Adams and Gillespie, 2006) rather than calculating their
absolute proportions. We used here the same equation of inver-
sion as Ramsey and Christensen (1998), based on the root-mean
square (RMS) minimization. Each spectrum (pixel) of the im-
age is processed independently. The major drawback of this
method is that it may provide negative coefficients of unmix-
ing. This means that the opposite shape of some spectra is
used in the model. Such results have no physical meaning. To
avoid negative coefficients, Ramsey and Christensen (1998) and
Combe et al. (2006) developed iterative methods. We used here
an algorithm that calculates all the possible combinations of
spectra. For each spectrum in an image, the closest model (min-
imum chi-square residual) is selected.

The algorithm is constrained so that the number of compo-
nents used to model a spectrum must be less than the number of
spectra in the input library. No constraint is applied to the value

http://ciclops.org/maps/maps.php
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Fig. 2. (a) A false-color georeferenced mosaic of I/F VIMS Titan data sets that were analyzed for spectral diversity are shown. The three wavelength bands of the
Titan VIMS spectrum used and the display color scheme is defined in Fig. 1: red = 1.28 µm; green = 1.59 µm; blue = 2.03 µm. Three main units appear: bright,
dark and blue materials. The numbers from 1 to 6 refer to the location of the spectral endmembers in Fig. 3a. The foreground is a mosaic of observations by the
Imaging Science Subsystem (ISS); credit: NASA/JPL/Space Science Institute. (b) Albedo image calculated by averaging the seven bands selected for this analysis,
with a superimposed contour line at 0.08 to help localizing positions.
of the unmixing coefficients because spectral mixtures follow
processes that are not always linear. As a consequence, the sum
of all the coefficients is not necessarily one.

3.4. The major spectral components

To some extent, spectral diversity can be discerned in a
simple three-color composite of images. Using each of three
methane windows (Fig. 2) and the color scheme red = 2.03 µm,
green = 1.59 µm, blue = 1.28 µm, three main spectral units ap-
pear: bright, dark and blue materials. The bright and dark units
are as seen in single-spectral-channel gray-scale images at most
wavelengths and discussed by McCord et al. (2006a, 2006b).
The blue unit appears to occur in association with both of the
other two units, but more so with the dark unit. The circular
feature Sinlap at −15 E, 5 N, has been identified as an impact
crater by Stofan et al. (2006), and is flanked by blue material
extending in the southeastern direction.
Improvements to the above qualitative analysis are made by
using all spectral windows and quantifying endmember selec-
tion. The first step is to choose the spectral endmembers. They
can be extracted from VIMS data (image endmembers), but
spectra of pure materials are not expected in VIMS data. When
spectral endmembers are not pure materials, SMA results are
difficult to interpret. Because of this, we prefer using reference
spectra of pure materials from laboratory measurements. We
used the automatic extraction of image spectral endmembers
in order to select spectral endmembers from laboratory mea-
surements, with the help of previous studies to know which
materials are expected on Titan.

3.4.1. Searching for image spectral endmembers
In this study, the Pixel Purity Index (PPI) tool of the Envi-

ronment for Visualizing Images (ENVI) software (Boardman
et al., 1995) is used to help determine the number and type
of the purest spectral endmembers present in a data set. This
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tool searches the entire data set for the most extreme spectral
shapes. It is based on the statistical principal components re-
sulting from a Minimum Noise Fraction (MNF) transform. The
PPI technique is based on random rotations around all the axes
of the principal components, and thus, the calculation is more
efficient when performed on non-projected and resampled data.
In addition, projecting the mosaic may result in pixel aggrega-
tion or pixel superimposition by other data, meaning a loss of
spectral diversity with respect to the original data. Performing
the PPI on a set of images requires first building a mosaic of
juxtaposed non-projected data. The PPI provides N + 1 spec-
tra, with N the number of wavelength channels. Here, these
correspond to the seven spectral windows shown in Fig. 1 and
Table 2. Thus, eight spectral endmembers are obtained via PPI.

The spectral endmembers with the most extreme spectral
shapes are not necessarily spectral components. In practice, the
PPI tool selects possible spectral components, but some of these
may not be appropriate inputs for the SMA. For example, PPI
may generate endmembers that are qualitatively too similar to
others, and these have to be removed. However, the purpose at
this stage is simply to provide a set of spectra that can be com-
pared to spectra of actual materials. These image endmembers
are not used as input for the SMA. Fig. 3 shows our selection
of the most extreme spectral endmembers—we attempted to as-
sociate these spectral shapes with known materials, taking into
account scattering by the atmosphere.

3.4.2. Atmospheric scattering model
Atmospheric scattering results in additive contributions in

remote sensing spectra (van de Hulst, 1981; Gaddis et al., 1996;
Bohren and Huffman, 1998; Sobolev, 1975; Rodriguez et al.,
2006). The regimes of atmospheric scattering depend on parti-
cle size with respect to the wavelength of incident radiation.
Non-absorbing particles that are large (>10 times) or small
(<0.1 times) with respect to the wavelength scatter radiation
in ways described by Mie (1908) and Rayleigh (1971) models,
respectively. Particles roughly equivalent in size to the wave-
length are likely absorbers. To calculate the amount of backscat-
tered light in a spectrum, physical models use optical constants
of aerosol materials and particle sizes as inputs (e.g., Sobolev,
1975). For example, Rodriguez et al. (2006) assume a single
layer of tholins with an average particle radius of 0.18 µm.
In the present study, we derive information about atmospheric
scattering from the SMA, assuming it is an additive contribu-
tion that follows a decreasing monotonic function of the wave-
length. Atmospheric backscattering contributions described by
Rodriguez et al. (2006) may be fitted by a polynomial func-
tion P of the form:

(1)P(λ) = a + bλ−1 + cλ−2 + dλ−3 + eλ−4,

where λ is the wavelength, a, b, c, d and e are scalars. The SMA
provides these scalars for each pixel independently, in the same
way as the unmixing coefficients of spectral endmembers. This
means all five parameters are set to be positive, which reduces
the degrees of freedom. This function corresponds to the part of
the spectra that cannot be explained by the spectral components
of the surface. It is always a monotonic function of wavelength,
which varies smoothly from pixel to pixel, and we assume it is
mainly due to atmospheric scattering.

We did not use a template spectrum from limb observations,
where the signal is almost entirely produced by atmospheric
scattering. The reason is that variations in atmospheric scat-
tering may occur between different parts of the disk, and this
cannot be taken into account using a single image endmember.

3.4.3. Spectra of surface materials
Probable components at the surface of Titan have been de-

rived first from Earth-based telescopic spectroscopy. H2O ice
has been detected first by Griffith et al. (2003) and Lellouch
(2006). Other materials have been suggested, such as CO2 ice
(Griffith et al., 2003; Coustenis et al., 2006), bitumens Lel-
louch (2006), and CH4 ice (Coustenis et al., 2006). Previous
studies using VIMS spectra from the Huygens landing site and
from the DISR/Huygens spectrometer concluded that proba-
ble components at the surface, in that region, may be H2O ice
(Tomasko et al., 2005; Rodriguez et al., 2006), CH4 ice, tholins
(Tomasko et al., 2005), and CO2 ice (Rodriguez et al., 2006).
The Tui Regio bright spot was also found to have 5-µm re-
flectance compatible with CO2 (Barnes et al., 2005). However,
representative surface spectra in Fig. 3 are not obviously related
to a composition of H2O ice, CH4 ice (Grundy et al., 2002)
and tholins (Cruikshank et al., 1991 in Griffith et al., 2003;
Bernard et al., 2006).

Spectrum 1 shows some similarities to CO2 ice spectra
(Fig. 4a) of some grain sizes, in particular the overall V shape
of both spectra. Bright material spectra (numbers 4, 5 and 6),
also share features with small grain size CO2 ice: they have the
same asymmetry in the double window at 2.71 and 2.78 µm,
with lower values (higher absorption) at the shorter wavelength.
The SMA results in Fig. 4b demonstrate that Spectrum 1 can
be modeled accurately (chi-square ∼1%) by a linear mixture
of laboratory CO2 ice spectra (Hansen, 1997) and the polyno-
mial atmospheric scattering model. In what follows, we use the
three CO2 ice spectra in Fig. 4a as inputs to the SMA, rather
than Spectrum 1. In the results, image fractions of the three
CO2 components are summed to provide a single CO2 ice end-
member map, because SMA lacks the precision to evaluate the
particle size.

The presence of water ice in dark regions has been sug-
gested by Tomasko et al. (2005) using data from the Descent
Imager/Spectral Radiometer (DISR) instrument of the Huy-
gens probe, as well as by Rodriguez et al. (2006) and by
McCord et al. (2006a, 2006b) based on VIMS data and by
Griffith et al. (2003) from groundbased telescope data. In what
follows, we used modeled spectra of H2O ice at 110 K pro-
vided by Hansen and McCord (2004). These are calculated
by scattering and albedo computation (Wiscombe and Warren,
1980) from optical constants by Grundy and Schmitt (1998).
Water ice spectra at different grain sizes show strong varia-
tions in spectral shape, even when resampled to the seven us-
able VIMS bands (Fig. 5). Only the 100 µm grain size H2O
ice spectrum was included in the model, because it has high
values at 1.07 and 1.28 µm, similar to the spectra of VIMS
dark blue units. Spectra of fine grain size H2O samples have
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Fig. 3. (a) A selection of the most extreme spectral shapes (endmembers) found by the Pixel Purity Index (PPI) tool of the Environment for Visualizing Images
(ENVI) software are shown. The location where these spectral endmembers come from are identified with numbers and arrows on the color composite mapped in
Fig. 2. (b) The same spectra offset along the vertical axis for clarity.

Fig. 4. Spectral Mixture Analysis applied on the CO2 ice-like endmember. Three CO2 ice spectra (a) and the polynomial atmospheric scattering model are combined
linearly to provide an accurate (chi-square ∼1%) fit (b).
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Fig. 5. H2O ice spectra with various grain sizes show different shapes, even
when sampled in the seven spectral atmospheric windows of Titan. The 10 µm
grain size sample shows spectral features that are never encountered in any of
VIMS measurements. The spectrum of the 100 µm grain size sample has low
I/F values at all the wavelengths, except at the two shortest bands, and is a po-
tential component for the dark blue regions. H2O ice with grain size of 1000 µm
has a spectral shape very similar to some scattering by fine aerosol particles or
by gases, and thus. The 100 µm grain size spectrum has been selected to per-
form the SMA.

sharp spectral features, in particular a local minimum at 2 µm
and sharp negative slope in the double window between 2.71
and 2.78 µm. These features are not observed in any of the
VIMS measurements, and thus the spectrum was not included
in the SMA. The 1000 µm grain size H2O ice spectrum shows
an increase towards shorter wavelengths, very similar to the
atmospheric scattering model. Because of this similarity, it
was not included in the input reference spectra library for
the SMA.

The positive slope in the double window at 2.71 and 2.78 µm
observed in Titan spectra is compatible with fine-grained CO2

ice, but not with fine-grained H2O ice. Coarse-grained H2O ice
is spectrally neutral in this wavelength range. However, labo-
ratory measurements by Bernstein et al. (2005) show that this
slope may be preserved in intimate mixtures of CO2 ice and
H2O ice. According to Coustenis et al. (2006), this increase
in albedo in ISO data is also an argument for the possibility
of CO2. Further, the CO2 absorptions at 2.69 and 2.78 µm are
shifted towards longer wavelengths in these mixtures, closer to
the centers of Titan’s atmospheric windows. Thus, the behav-
ior of the double window may be explained by the presence of
CO2 ice mixtures on Titan’s surface.

For comparison purpose, Fig. 6 shows the same VIMS end-
member spectra than Fig. 3, and laboratory spectra for CH4 ice,
CO2 ice (the same as Fig. 4a) and H2O ice (the same as Fig. 5).

Though the remaining spectral endmembers share some
common features, they cannot be modeled completely by CO2

ice, H2O ice, and the atmospheric component. Thus, these spec-
tra most likely represent different surface compositions, and we
named them for their respective geographical origins: the dark
blue regions (Soderblom et al., 2005, 2007), the dark brown re-
gion (Soderblom et al., 2005, 2007), the Tui Regio bright spot
(Barnes et al., 2005, 2006, 2007; McCord et al., 2006a, 2006b),
the bright linear features and the bright terrains. In addition,
several of the spectral endmembers in Fig. 3 have a discontinu-
ity in slope at 2 µm that may be due to a shared component.
In order to isolate this component, we performed the SMA
using only the CO2 ice spectra, the H2O spectrum, and the at-
mospheric scattering model, and then calculated statistics for
the residual image.

When an insufficient number of spectral endmembers is used
in the SMA, the spectral shape of the residual is expected to
contain some information about the missing spectral compo-
nents. The inversion of the linear combination equation pro-
vides a unique solution when the number of unknown variables
(spectral endmembers) is lower than or equal to the number of
equations (seven, the same as the number of wavelength chan-
nels). Thus, the program is set to use either a maximum of three
spectral components with a maximum of four coefficients in
the atmospheric scattering model, or a maximum of two spec-
tral components with a maximum of five coefficients in the
atmospheric model. The residual spectrum and the chi-square
statistic are calculated for each pixel.

The chi-square image is displayed in Fig. 7a. Figs. 7b to 7h
show the data clouds of the residual for each wavelength versus
the chi-square value. The linear shape and the oblique orien-
tation of the clouds at each wavelength indicate the residual
is correlated to the chi-square value when the slope is positive
and anti-correlated when the slope is negative. This linearity
means that these residuals are not random, despite the 5 degrees
of freedom of the polynomial atmospheric scattering model. It
also implies that only one more spectral component is necessary
to accurately model the VIMS data. The most representative
spectral shape of the residual is calculated by linear regressions
(see the equations on the graphs) at each wavelength for the data
points that correspond to chi-square values greater than 5%.
This value is an estimation of the data uncertainties (gray ranges
on the graphs). It corresponds also to the most linear part of the
data clouds.

The typical spectral shape associated with the residuals is
displayed in Fig. 7i (thin solid line spectrum). This spectrum
has negative values, and thus must not be used as a spectral end-
member in the SMA. The most remarkable feature is the high
I/F value at 2 µm. The shape in the double window at 2.7 µm
is similar to the fine-grained CO2 ice spectra. Among the pos-
sible materials that may be present on Titan (CH4, C2H6, H2O,
CO2 ices and tholins), only the fine-grained CO2 ice spectrum
has a spectral shape similar to the residual spectrum. Assuming
this shape is due to CO2 ice only, we infer the SMA is defi-
cient in that component. On the other hand, the negative value
at 5 µm indicates an excess of the large-grained CO2 ice spec-
trum, because this is the only endmember used in the SMA that
has large values at 5 µm. High values at 2 µm and at shorter
wavelengths in the residual spectrum cannot be explained by
the CO2 ice and atmospheric scattering spectral endmembers.
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Fig. 6. Spectra at full VIMS resolution (a)–(c). Laboratory spectra for each of the candidate materials. (a) CH4 data from Grundy et al. (2002). (b) CO2 data is taken
from Hansen (2005). (c) H2O ice at 110 K provided by Gary Hansen. (d) VIMS spectra for each of the major surface endmembers.
Thus, the characteristic spectral shape of the unknown compo-
nent is given by the 1–2 µm wavelength range. The residual
spectral shape may be iteratively corrected to calculate a plau-
sible spectrum for the unknown component. This is obtained by
adjusting the proportions of the CO2 ice spectra and the poly-
nomial atmospheric scattering model in order to reach positive
values at all the wavelengths and to minimize all the spectral
features in the range 2.7–5 µm. The result is shown as the bold
line in Fig. 7i. This spectrum still has the main spectral fea-
tures of the residual spectrum and meets all the mathematical
requirements to be included as a regular endmember input to
the SMA.

3.4.4. Spectra of actual materials used to fit image spectral
endmembers

A further test of the SMA consists of using the three CO2
ice spectra, the 100-µm grain size H2O spectrum, the calcu-
lated bright component at 2 µm and the polynomial atmospheric
scattering model to fit the six spectral endmembers in Fig. 3.
The SMA is performed on the windowed 7-channel spectra.
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Fig. 7. Statistical analysis of the SMA residuals using CO2 ice spectra, the H2O spectrum and an atmospheric scattering model. (a) Image of the chi-square residual.
(h) Residual differences between VIMS spectra and the SMA model at the seven atmospheric windows. (i) Spectral shape of the residual and spectral shape proposed
for an unidentified bright component at 2 µm.
The linear spectral unmixing algorithm is constrained to use
no more than three spectral endmembers at a time for a total
of no more than seven simultaneous parameters. This means a
maximum of four atmospheric parameters may be used when
three spectral endmembers are present in the model. In this
case, the constant term of the polynomial is set to zero. The re-
sults are shown in Fig. 8. All the models fit the spectra under the
1% chi-square limit. The CO2 ice spectra, the calculated bright
component at 2 µm and the atmospheric scattering polynomial
are necessary for all of them. For the dark blue region spec-
trum (Fig. 8a), the H2O ice spectrum has a small but significant
contribution, while the atmospheric scattering component has
the highest spectral contribution. The relative proportions of the
other materials in decreasing order are CO2 ice and the calcu-
lated bright component at 2 µm. Low I/F values are consistent
with other surface components of dark blue regions having a
low albedo in all atmospheric windows (i.e., a flat spectrum),
which has been reported previously as consistent with dirty
water ice (Griffith et al., 2003; McCord et al., 2006a, 2006b;
Soderblom et al., 2007). The spectrum from the dark brown re-
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Fig. 8. Spectral Mixture Analysis on VIMS spectral endmembers using CO2 ice spectra, a 100 µm grain size H2O ice spectrum, the calculated bright component
at 2 µm and an atmospheric scattering model. (a) Dark blue regions. (b) Dark brown regions. (c) Bright terrains. (d) CO2 ice-like spectral endmember. (e) Tui Regio
bright spot at 5 µm. (f) Bright linear features.
gions is modeled by CO2 ices, the bright component at 2 µm
and the atmospheric model. It has the lowest I/F values at
short wavelengths, which can be also explained by dark neu-
tral spectral components at the surface. For the bright terrains
(Fig. 7c), the atmospheric scattering contribution is still impor-
tant at short wavelengths, but the CO2 ice spectra and the bright
component at 2 µm are used in significant proportions. The
CO2 ice-like spectrum is mainly modeled by a CO2 ice spec-
trum and the atmospheric model, also with a contribution by
the bright component at 2 µm that improves the fit with respect
to Fig. 4b. The bright spot at 5 µm (Tui Regio, Fig. 7e) is mod-
eled with lower contribution by atmospheric scattering and a
much higher contribution by CO2 ices, which explains the high
I/F values at 5 µm. This is consistent with an enrichment of
the Tui Regio bright spot by CO2 ice, as discussed for another
5-µm bright spot by Barnes et al. (2005). Finally, the bright
linear features (Fig. 7f) are mainly modeled with CO2 ices, a
smaller amount of the bright component at 2 µm and, inter-
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Fig. 9. Images of the unmixing coefficients for the three spectral endmembers related to the surface. (a) CO2 ice. (b) Calculated bright component at 2 µm. (c) H2O
ice, with a contour line at albedo = 0.08 (see Fig. 2b). (d) Color composite of the three endmembers: red = CO2 ice; green = bright component at 2 µm; blue = H2O

ice.
estingly, a significant proportion of a flat additive contribution
at all wavelengths (constant part of the atmospheric scattering
polynomial). This contribution occurs only on these features,
which are present at the same latitude (about 30 deg. S) and
have similar shape to clouds identified by Roe et al. (2005) and
Lellouch (2006). In addition, these features are apparently tran-
sient, since they do not appear in the global map by Barnes et
al. (2007). As far as the SMA is concerned, the spectral com-
ponents of clouds are treated the same as surface components.
As detailed above, our spectral unmixing results show that the
diverse spectral shapes of the VIMS Titan data can be best
explained by linear mixtures of CO2 and H2O ices, a bright
component at 2 µm and a polynomial atmospheric scattering
model.
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3.5. Mapping of surface spectral units

The SMA was performed on the images using the same
choices and constraints described in Section 3.4.4. The chi-
square residual is lower than 1% for all the pixels. Mixing
coefficients are displayed in Fig. 9.

The images of the unmixing coefficients shown in Figs. 9a–
9c reveal sharp spatial features that are strongly correlated to
albedo, because the wavelength channels are correlated to one
another. As a consequence, bright areas are often the bright-
est regions at all wavelengths, thus all the spectral components
have a higher absolute contribution. In addition, correlations of
CO2 ice and the bright material at 2 µm with albedo may be
explained by the large proportion of VIMS spectra that have
both lower I/F values in the double atmospheric window at
2.7–2.8 µm, and high values at 2 µm, respectively. There are
exceptions, however, since the Tui Regio bright spot and the
highest latitude regions correspond to the highest CO2 ice mix-
ing coefficients (Fig. 9a). The map of the bright component
at 2 µm (Fig. 9b) also shows some structure, including a maxi-
mum east of Shangri-La and lower values in the northern bright
terrain. In addition, the sharp edges between bright and dark ar-
eas indicate their spectral components are in fact due to surface
materials. Water ice (Fig. 9c) is distributed in a few patches that
correspond to the dark blue regions, as reported by Soderblom
et al. (2007), including in the low-albedo areas surrounding the
Sinlap crater.

Fig. 9d is a color composite that summarizes the unmixing
coefficient images of the three spectral endmembers for the sur-
face materials. Pure colors indicate the location of the purest
compositions. CO2 ice is in red, and is purest in the bright linear
features, according to the SMA. The component bright at 2 µm
is coded in green and does not appear as a pure component in
any individual spectrum. The water ice is in blue, and the high-
est proportion occurs in the dark blue regions at the south–east
edges of the bright terrains. However, because the image of the
water ice endmember has been stretched, bright blue also cor-
responds to mixtures with CO2 ice and the bright component
at 2 µm (Fig. 9a), while dark indicates a low contribution by
CO2 ice, H2O ice and the bright component at 2 µm (Fig. 9b).
As a consequence, the intermediate color yellow (the Tui Regio
bright spot at 5 µm, several areas south of Shangri-La, an area
at the north of Shangri-La and several patches south of Fensal)
are mixtures of CO2 and the bight component at 2 µm.

The atmospheric scattering component (Fig. 10) is ubiqui-
tous and plentiful, its minimum value occurring about halfway
between zero and the maximum coefficient among all endmem-
bers (Fig. 10a). In Fig. 10b, the image dynamic range has been
stretched to enhance contrast. The image looks fuzzier than
the other spectral components, indicating more gradual tran-
sitions between bright and dark regions. These observations
are consistent with atmosphere-related phenomena. At some
locations in dark areas, the atmospheric model shows slightly
higher values than in the surrounding regions, especially near
the edges with bright areas, implying a greater contribution
at short wavelengths. These are regions where the presence
of water ice has been previously suggested (Soderblom et al.,
2007). Given the few usable spectral channels VIMS provides
for observing Titan’s surface, this spectral shape is consistent
with either atmospheric scattering or large-grain solid H2O (or
both). Thus, while H2O ice may be present, the model does not
specifically require its spectrum to explain the spectral shape
of dark regions. Fig. 10c shows the constant term of the poly-
nomial atmospheric model. A few areas require this constant
in the model. They form coherent units that may indicate com-
mon properties of the materials. Three stripes at the south of
Shangri-La correspond to the bright linear features (Fig. 2, ar-
row 5 and Fig. 8f), and a few patches with more random shapes
are visible at the south east of Fensal. The presence of the con-
stant term in the model indicates a spectral behavior that is
different from most of the surface materials. Assuming the tran-
sient bright linear features are clouds, the other bright areas in
Fig. 10c may have a similar origin.

3.6. Conclusions and perspectives on the Spectral Mixtures
Analysis

The results from the SMA show more spectral variety in
the bright than in the dark areas. The presence of two types
of bright materials is corroborated both by the unique shape
of the Tui Regio bright spot, which seems to be enriched in
CO2 ice compared to other areas, and by spectra of the other
bright terrains. This diversity in the bright regions and the un-
usual spectral properties of the Tui Regio region are part of our
earlier findings (McCord et al., 2006a). As discussed above,
the bright linear features are likely clouds. With this hypoth-
esis their apparent enrichment in CO2 ice is enigmatic, since
the extremely low saturation vapor pressure of CO2 in the cold
lower troposphere should preclude its incorporation in clouds
higher up. If it is confirmed the linear features are clouds, their
apparent enrichment in CO2 is likely an artifact due to inade-
quacies in our atmospheric model, which causes the SMA to
overestimate CO2 contributions where atmospheric effects are
different from other locations due to altitude.

On the dark terrains, the VIMS spectral shapes can be mainly
explained by an atmospheric scattering model, plus relatively
small amounts of CO2 ice and the unknown bright component at
2 µm. Thus, removing the atmospheric contribution, the surface
composition of dark terrains is probably dominated by a neu-
tral spectral component. The dark blue areas imaged by VIMS
are modeled with the same spectral components as the other
dark regions, plus a small but significant fraction of H2O ice
with grain size about 100 µm. This H2O ice distribution de-
rived from the SMA is consistent with previous studies (Griffith
et al., 2003; McCord et al., 2006a; Rodriguez et al., 2006;
Soderblom et al., 2007), but we infer smaller areal coverage
than implied earlier. Confusion of the water ice component with
the atmospheric scattering component may at least partly ex-
plain this discrepancy. Indeed, higher I/F values at 1.0 µm
than I/F values at 1.3 µm are common to the λ−4 contribu-
tion of the atmospheric scattering model and large-grain sized
H2O ice spectrum, which may increase the uncertainty in water
ice detection.
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Fig. 10. Images of the atmospheric scattering contributions derived from the SMA with a contour line at albedo = 0.08 (see Fig. 2b). (a) Sum of all the atmospheric
contributions. (b) Enhancement of figure showing structures over the dark areas that could be associated to H2O ice at the surface. (c) Atmospheric contribution
(constant term in the polynomial function) showing the different nature of the bright linear features at the South of Shangri-La, and some other areas southeastern
of the Fensal region.
Our analysis confirms that spectrally distinct units exist on
the surface of Titan. The mid-latitude surface diversity can be
modeled using only three main spectral components plus H2O
ice, to a lesser extent. These results are compatible with the
early analysis of the Ta data set (McCord et al., 2006a) and
with the interpretation by Barnes et al. (2007), who also found
a limited number of terrain types with a comparable description
based on color composite images.

CO2 ice spectra account for a large fraction of bright areas,
and may explain the high I/F values at 5 µm of the Tui Re-
gio bright spot. Although Hartung et al. (2006) placed an upper
limit of 7% on the spatial coverage by pure CO2 ice in Ti-
tan’s bright surface regions, their observations were limited to
longitudes where we find lower relative abundances of this end-
member, which appears highly correlated with albedo (Fig. 8a).
As noted by those authors, Tui Regio is absent from their obser-
vations. Additionally, intimate mixtures with other compounds
(e.g., H2O ice) could reduce the strength of the absorptions
(2.01 and 2.07 µm) used in the search, artificially lowering the
derived upper limit on abundance. We discuss possible absorp-
tion features in detail in Section 7. In dark regions, atmospheric
scattering accounts for most of the signal, suggesting the sur-
face is composed of a (dark) spectrally neutral material, which
is consistent with the findings of McCord et al. (2006a). How-
ever, the shape of the calculated bright spectral endmember at
2 µm is somewhat mysterious, since it is not a characteristic of
any of the materials supposed to be present on Titan. However,
the spatial distribution of this endmember does suggest it is re-
lated to the surface. A similar component has been observed by
Rodriguez et al. (2006) as a specific unit near the Huygens land-
ing site. In this study, we show that this endmember contributes
in most of the bright terrains. The spatial distribution and the
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spectral shape of this component do not provide sufficient in-
formation to identify a related composition. The interpretation
of spectra in these areas should also be investigated in paral-
lel with information on the morphology and state of the surface
provided by other instruments (e.g., radar).

We propose here a spectral interpretation of the different
units, including areas composed of almost pure components,
and regions where two or more of these components are mixed.
Our analysis further suggests that the SMA approach might
be used to detect and map atmospheric scattering contribu-
tions, which are relatively higher than the other components
above the blue unit. These results may be used to constrain
more rigorous models of atmospheric scattering (e.g., Griffith
et al., 2003; McCord et al., 2006b, 2007; Rodriguez et al., 2006;
Ádámkovics et al., 2006). On the other hand, a more accurate
(i.e., physically-based) atmospheric model would be a valuable
improvement to the present SMA.

4. Spectral features search above the noise level

The second approach we used for investigating the surface
composition of Titan with the VIMS data was to search within
the methane windows discussed earlier (Fig. 1) for spectral fea-
tures that might be associated with the surface materials. We
used several methods to search for spectral features, and, in the
process, explored the noise characteristics of the VIMS data.
We concentrate on the 5-µm spectral window because it is the
spectrally widest (∼15 spectral channels) and is least affected
by atmospheric scattering, but we also investigated the other
methane windows.

First, we analyzed the spectral units identified in the previ-
ous section for each of the VIMS data sets (Tables 1 and 2; Figs.
2–4). The simplest approach is to average the spectral segments
within the usable windows, first for the entire scene, and then
for the pixels classified as each of the three main spectral units
identified in Fig. 4b: CO2 ice, 2-µm bright, and atmospheric
scattering (plus water ice). The average 2- and 5-µm window
spectra for each of the three spectral units are shown in Fig. 11.
These are calculated using for each pixel spectrum a weighting
factor that is a function of the mixing coefficient for each of the
three spectral units. The spectrum for each pixel in each image
is scaled to the average (of all 980 images used in this study) to
remove overall spatial variations in brightness, and variations
between images. The spectra are quite noisy due to the low sig-
nal (Table 1), and show considerable evidence of instrument
effects, especially noise spikes and erratic darks (see discussion
below). None of these plots shows any spectral feature above
the noise level (dashed lines = one standard deviation), which
is controlled by the low signal in this spectral region and the
several instrumental effects present. The small features present
in the spectra in Fig. 11 can be associated with individual detec-
tor performance characteristics and are not properties of Titan.
This result is consistent with but considerably extends the ini-
tial search of this spectral window made earlier (McCord et
al., 2006a), with more recent results reported by McCord et al.
(2006b, 2007).

While we focus in this section on the 5-µm window, we also
conducted a search for spectral features within the other five
spectral windows in a similar manner. Only the 2-µm spectral
window seems clear and broad enough (∼5 spectral channels)
to perhaps reveal a feature. The 2.8-µm window is broad enough
but it is complicated by an unidentified absorption near its cen-
ter, discussed in some detail from VIMS by McCord et al.
(2006a, 2006b) and using Earth-orbital telescope by Coustenis
et al. (2006), and the other, shorter wavelength windows, are
both very narrow (1–2 channels) and affected more seriously
by the haze.

Note that both the spectra for the 2- and 5-µm windows for
the atmospheric scattering-like unit show elevated I/F values
at the edges of the spectral windows (less overall methane ab-
sorption) when compared to the other units. This is consistent
with the association of this endmember with atmosphere effects
Fig. 11. Shown here is the general location on Titan of the data sets used for the search for absorption features within the methane windows (Table 2).
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(as discussed in the previous section), since the atmospheric
path-length would be reduced in this case. As a comparison,
spectral segments taken near Titan’s limb, where the signal is
almost exclusively due to the atmosphere, are nearly flat across
both windows.

5. Search for spectral features within the global noise level

With no spectral absorption features appearing above the
whole-scene noise level for scenes so far analyzed, it remains
possible that there exist features too weak to appear in these
data of relatively low signal-to-noise ratio (see the signal lev-
els noted in Table 1). A search for such features must involve
an analysis of the noise characteristics of the data as well as an
analysis of the spatial distribution of any suspected features.

In particular, we searched for absorption features that satisfy
any or all of the following criteria: (i) The feature is apparent in
the average of all pixels in a dataset (provided dark and flat-field
corrections are accurate to a specified degree). (ii) Contiguous
subset(s) of an image contain a higher concentration of pixels
showing the feature than predicted by the data noise statistics.
This excess should be observed consistently in different im-
ages containing the same region in question. (iii) The feature
is spatially correlated with a morphologically and/or spectrally
distinct unit, again consistent from frame to frame of the same
area. Using these criteria, we reduce selection bias, which can
result from choosing pixels based on their adherence to the pro-
posed spectral shape.

For this search, we selected a mosaic of VIMS data sets
(Jaumann et al., 2006) because it covers a region of special in-
terest. For example, the existence of weak spectral features in
the VIMS data set for this region has been suggested recently
(Clark et al., 2006a, 2006b, 2007). The mosaic covering this re-
gion is TI019_HDAC001, which is described in Table 1. The
locations of the datasets described in this section are shown in
Fig. 12.

We followed Clark et al. by using the central region (161 ×
171 pixels) of the T1_019_HDAC001 cube (Fig. 13a) was an-
alyzed for the standard deviation, which is plotted (±1 SD)
as dashed lines above and below the average (Fig. 13b). This
prevents overall pixel-to-pixel brightness differences from dis-
torting the spectral variance. There are two anomalies in the
average spectrum and the one-standard-deviation envelope in
Fig. 13b, at the 4.94- and 5.09-µm channels, which are due to
noisy detectors, as discussed below. No obvious Titan spectral
features appear.

We then analyzed the scene, spectral channel by spectral
channel. New brightness-scaled image cubes were made, ex-
cluding each of the selected test spectral channel image planes,
and then the I/F values in the test channel were compared to
the average and standard deviation shown earlier (Fig. 13b).
Pixels with I/F deviations for each of the test channels were
flagged using 0.5, 1, 2, and 4 standard deviations as criteria.
They were also distinguished as being either positive or nega-
tive deviations. Since the average spectrum is relatively smooth
and featureless, any real absorptions at the pixel level will ap-
pear as negative deviations from this mean. As described above
in our search criteria, an excess of negative deviations, and/or
a spatial clustering of outlier pixels, would suggest such an
absorption (or potentially an emission) feature. Fig. 14 shows
maps of pixels with positive (white) and negative (gray) de-
viations beyond the one-standard-deviation criterion for three
spectral channels. One can see in Fig. 14 the outlines of the
frame boundaries making up the mosaic image due to differ-
ences in signal levels and noise characteristics among the mo-
saic composite frames. The spatial distribution of the positive
Fig. 12. Plots of weighted average spectra for each of the five spectral endmembers found by SMA, for 272 data cubes. For each endmember, we show (a) the 2-µm
window average spectrum, and (b) the 5-µm window average spectrum. Dashed lines indicate one standard deviation from the mean. We note a relative broadening
of the spectra associated with the atmospheric scattering-like endmember, for both windows, consistent with its hypothesized atmospheric origin. We also note that
no spectral obvious spectral features are present.
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Fig. 13. The central portion of mosaic TI019_HDAC001 (161 × 171 pixels) is shown on the left and the average spectrum with a one-SD envelope (dashed lines) is
shown on the right, calculated as described in the text.

Fig. 14. Outlier pixels, defined as those deviating from the whole-scene mean spectrum by >1 SD, for three different channels: 4.92, 4.99 and 5.06 µm. Gray pixels
are negative outliers, and white pixels are those deviating in the positive direction.
and negative deviations does not seem to us to show a dis-
cernable pattern, except that darker regions tend to have more
deviations (positive as well as negative) because of the lower
signal and SNR for lower albedo regions.

Fig. 14 shows that the number of pixels with one-SD de-
viations is nearly what would be expected if the noise were
Gaussian. For each of the three test channels (4.820, 4.989 and
5.057 µm), the percentage of pixels with total, positive and neg-
ative deviations are, respectively, 32.7, 15.2 and 17.2%; 27.5,
13.4 and 14.1%; and 32.1, 18.0 and 14.1%. Gaussian statistics
predict that the total number of deviations would be 31.7% and
the percentage of pixels with positive and negative deviations
would each be half this.

We then looked for spectral features in each and every spec-
tral channel in the window. Each of the four plots in Fig. 15
shows 15 average spectra. Each spectrum is the average of all
pixels in mosaic M1 with a deviation (positive or negative) at
a selected spectral channel greater than 1/2, 1, 2, and 4 stan-
dard deviations. There are 15 spectral channels used in the 5-µm
window analysis here and so there are 15 average spectra in
each of the four plots in Fig. 15. None of these average spec-
tra shows a spectral feature different than in the average for the
scene (Fig. 12b), except that for large deviations, especially for
4 SD, incompletely corrected noise spikes become evident as
positive (but not negative) deviations for each and every chan-
nel (Fig. 15, lower right). The exception is the noisy detector at
5.09 µm, the erratic behavior of which will be discussed thor-
oughly in Section 8.

To better show that the noise characteristics of this VIMS
data set are nearly Gaussian, Fig. 16 shows a plot of the num-
ber of pixels with outliers (deviations) of different magnitudes
(measured in numbers of standard deviations) for each of the 15
spectral channels in the 5-µm window. The total number of out-
liers at each deviation level is shown as solid lines, the number
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Fig. 15. Average 5-µm spectra for all outlier pixels (deviating in the positive or negative direction) for thresholds of 0.5, 1.0, 2.0, and 4.0 times the whole-scene
standard deviation. Each line is the average outlier spectrum for one channel in the 5-µm window.
Fig. 16. The Gaussian nature of the VIMS data are shown here, by plotting
the fraction of pixels in a scene deviating by some multiple of the standard
deviation. A true Gaussian distribution would have ∼0.16 of pixels deviating
in both the positive and negative direction by >1 SD.

of positive outliers as dashed lines, and the number of negative
outliers as dotted lines. There are 15 plots for each of total, pos-
itive, and negative deviations, one for each spectral channel. As
a comparison, note that for Gaussian statistics, the number of
1-SD outliers is predicted to be 31.7%, which is near where the
1-σ totals lie in Fig. 16, except that there are a few more due to
incompletely corrected noise spikes, as shown also in Fig. 15.
Further, note that there is no excess of negative deviations over
positive deviations, suggesting that there is no spectral absorp-
tion present beyond what might be shown in the scene average
(Fig. 12b) (against which the deviation is measured) hidden in
the data near the noise level. The good news is that the VIMS
data noise characteristics seem to be nearly Gaussian and thus
are well-behaved, except for the noise spikes and a few noisy
detectors (e.g., at 4.94 and 5.09 µm, see Section 8).

Having established the near Gaussian statistical nature of the
VIMS data, we proceeded to analyze the pixels with positive
and negative deviations separately. In Fig. 17 we show (a) an
average of spectra for pixels with one-channel negative (only)
deviations >1σ at spectral channel 4.973 µm and (b) average
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Fig. 17. Average 5-µm spectra are shown for >1 SD outlier pixels for (a) negative deviations at 4.97 µm, (b) positive deviations at 4.97 µm, (c) negative deviations
at 4.97, 5.02, and 5.06 µm, and (d) positive deviations at 4.97, 5.02, and 5.06 µm. The whole-scene average spectrum is shown in black, with a one-SD envelope
(dashed lines).
spectra for pixels with one-channel positive (only) deviations
>1σ . The average spectrum for the scene and the standard devi-
ation envelope are also shown, taken from Fig. 12b. As shown in
Fig. 16, for this scene there is approximately the same number
of positive and negative deviations in the scene at each deviation
magnitude, and thus we see both a negative (false absorption)
and a positive (false emission) feature in Figs. 17a and 17b
but there is no discernable spectral feature at 4.973 µm in the
overall average spectrum for the scene. In Figs. 17c and 17d,
we extend this analysis by showing positive- and negative-only
deviations for three spectral channels [4.97 (as in Figs. 17a
and 17b), 5.02 and 5.06 µm]. This plot suggests that false ab-
sorption and false emissions features can be found at each and
every spectral channel if only pixels with negative or positive
deviations are selected for averaging. Fig. 18 shows the same
effect for each and all 15 spectral channels in the 5-µm window.
Note again the noisy channels at 4.94 µm and 5.09 µm. Further,
we find the same effect by selecting for negative and positive
deviations that are more than one channel wide and that have
arbitrary spectral feature shapes, but there are of course fewer
pixels with broader or more complicated deviations, according
to Gaussian statistics (McCord et al., 2006b, 2007). This exer-
cise demonstrates that one can show negative (false absorption)
features or positive (false emission) features by selecting pixels
with only negative or positive noise deviations. This effectively
is what is done in some analysis techniques used to search a
data set for a pre-assumed absorption or emission feature at a
signal level near or below the noise level.

In summary, we present and demonstrate here a simple
but thorough and unbiased analysis approach for searching for
slight excesses of negative (positive) deviations in the data that
might suggest an absorption (emission) feature slightly below
the noise level of the data. After a detailed analysis of the
VIMS IR data for the mosaic data set TI019_HDAC001, we
find no evidence of spectral absorptions at any spectral channel
or contiguous groups of channels in the scene average spec-
trum nor any evidence of such absorptions for specific pixels
significantly above the number of pixels predicted by Gaussian
statistics. The pixels associated with negative (and positive)
deviations from the mean spectrum seem uncorrelated with fea-
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Fig. 18. Average 5-µm spectra are shown for >1 SD outliers at each channel, for (a) negative deviations and (b) positive deviations.
tures in the scene except that there are more deviations (positive
as well as negative) for lower-albedo regions because of the
lower signal level in those regions.

6. Search for benzene

We specifically analyzed the same VIMS dataset (M1) for
recently reported spectral features. Clark et al. (2006a, 2006b,
2007) recently reported detection of widespread aromatic and
aliphatic hydrocarbon deposits on Titan using the VIMS data.
We explored the data sets M1 and TI003_GLOBMAP001 (M2)
that were used by Clark et al. as well as other data sets using
our analysis approach described above in Section 5. We also at-
tempted to fit a laboratory spectrum for benzene plus carbon
black supplied to us by R. Clark and used in the Clark et al.
study to VIMS spectra of Titan in the 5-µm window. In doing
so, we followed the Tetracorder algorithm (Clark et al., 2003;
Swayze et al., 2003) used in the Clark et al. study, except that
“inverse” absorption bands are also allowed. Each VIMS spec-
trum (for each pixel) is first divided by a continuum, defined
as a line fitting two (or more) points adjacent to the benzene
band as it appears in the laboratory spectrum. The result is then
matched (using a least-squares fit) to the laboratory spectrum
(which has also been divided by its own continuum), in this case
the spectrum of benzene plus carbon black. If the correlation
coefficient meets some arbitrary threshold, positive or negative,
the pixel is declared a match. Negative correlation coefficients
indicate “inverse” absorption bands, or positive outliers. Posi-
tive and negative outliers are each mapped separately, and their
mean spectra plotted along with the standard deviation for the
whole scene, representing the noise level. We first treated the
M1 mosaic.

Initially, we searched the data set for obvious absorptions by
calculating the average spectrum (Fig. 19a) for only bright and
only dark pixels (identified in Fig. 19b). By comparing these
averages with the total scene average shown in Fig. 12b, we
see that no spectral features appear other than due to the noisy
detector at channel 4.94 µm. We then fit the Clark laboratory
spectrum for benzene plus carbon black to the spectrum for
each of the pixels. We also tried to fit the inverse of the lab-
oratory spectrum. The results are shown in Fig. 20. Pixels were
found with both negative (Fig. 20a) and positive (Fig. 20d)
spectral features matching the laboratory spectrum and its in-
verse. The average for all pixels with both positive and negative
matches is shown in Fig. 20c, where a slight positive feature
appears at the benzene band suggesting a slight (but probably
meaningless) deficiency of absorption feature in the scene. The
average spectrum for all positive and negative outliers is shown
with the average spectrum for the entire scene in Fig. 20b. There
are approximately as many positive as negative spectral feature
matches found for this data set, suggesting no significant ex-
cess of pixels with the laboratory feature match above what is
expected from the noise characteristics. There is an interest-
ing tendency for the spectral channel on the long-wavelength
side of the benzene band to be high when the benzene band
channel next to it is low (and vice versa), and we suspect that
there is some erratic behavior in the performance of this de-
tector (see Section 8). The locations of the pixels with positive
and negative feature matches are shown in Fig. 21. Again, no
systematic association of the alarmed pixels with spatial fea-
tures seems evident, other than a tendency for both positive and
negative outliers (in approximately equal numbers) to be asso-
ciated with lower-signal regions (that is, darker features). These
results are similar to those found in Section 5 when using our
less sophisticated spectral-shape search template (simple V- or
Gaussian-shaped spectral feature rather than an actual labora-
tory absorption).

As a further test, we treated M1 using the same Clark lab-
oratory absorption profile, but shifted the Clark benzene band
profile to center on 5.005 µm (from 5.041 µm). We obtained
similar results as by using the original band wavelength posi-
tion (Figs. 22, 23). This result also is found by shifting to other
wavelength positions. In all cases the alarmed pixels, positive
and negative outliers, are concentrated in the areas of lower
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Fig. 19. Average 5-µm spectra are shown for the brightest and darkest ∼3000 pixels in the TI019_HDAC001 mosaic subscene (highlighted in the adjacent plot),
where brightness is defined as I/F in the 2.03-µm window.

Fig. 20. Average 5-µm spectra are plotted for outlier pixels in the TI019_HDAC001 mosaic subscene, using the band-fitting approach described in the text, with a
benzene + carbon black laboratory spectrum centered at ∼5.04 µm. The average of pixels deviating in the negative direction is plotted in red, while the average of
pixels deviating in the positive direction is plotted in blue.
SNR, namely darker regions, and occur in approximately equal
numbers and according to Gaussian statistics.

Further, since M1 is a mosaic of the original VIMS data
sets, and thus may contain artifacts from processing and resam-
pling, we analyzed the original VIMS data cubes from which
the mosaic was made. We again searched for pixels with spec-
tra matching the Clark et al. laboratory spectrum and its inverse.
Fig. 24 shows each of the cubes covering M1, with the pixels
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Fig. 21. A map of the outlier pixels at ∼5.04 µm, using the same band-matching algorithm, and color coding as in Fig. 19.

Fig. 22. The same plot as in Fig. 20, but with the band centered at ∼5.01 µm.
alarmed that match the laboratory spectrum (red, middle row)
and its inverse (blue, bottom row). Interestingly, there is little
consistency in the exact pixels alarmed among the VIMS data
sets covering the same spatial scene, i.e., the same location does
not match the laboratory spectrum consistently from data set to
data set for the same scene.

We also searched the VIMS data sets treated in our search
for spectral diversity described in Section 3 (Fig. 2 and Table 1)
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Fig. 23. The same plot as in Fig. 21, but with the band centered at ∼5.01 µm.

Fig. 24. Band-fitting results for individual data cubes making up the mosaic TI019_HDAC001, using the same laboratory spectrum as in Fig. 20, at ∼5.04 µm.
Again, red pixels are matches in the negative direction from the mean, while cyan indicates pixels deviating in the positive direction. Note the inconsistency in
geographic location of the matching pixels. The |FIT*DEPTH| criterion is >0.1 for the darker shade, and >0.2 for the brighter shade of each color. The total number
of positive outliers is 2359, while the total number of negative outliers is 1393.
for the benzene feature using the same technique and found no
evidence of the feature.

7. Analysis of other scenes

7.1. Search for absorptions

Following the above analysis, we treated the data set
TI003_GLOBMAP001 (M2, Fig. 25; Table 1), which is of
higher SNR than the other data sets treated here and covers
an entirely different region of Titan. Again, the Clark et al.
laboratory spectrum and its inverse were used in an attempt
to find pixels with matching spectra, which are encoded as
red (lab) and blue (inverse lab) (Fig. 25). Again, no pattern
of alarmed pixels is evident, except for a cluster of laboratory
spectrum matches (red) in the upper-left region, very near the
limb. A closer inspection of some of these pixels clearly shows
noise spikes (positive noise features) in the 5.09-µm channel,
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Fig. 25. As in Fig. 24, we plot the pixels matching an absorption at ∼5.04 µm,
this time for the data cubes used in the mosaic TI003_GLOBMAP001_1.

which tends to create a false negative feature shortward of that
channel. In subsequent analyses, the cluster at upper-left was
not found to be present in other VIMS datasets containing the
same geographic region of Titan. We therefore conclude that
this feature is likely an artifact, enhanced by the low SNR in
that region.

Using the un-mosaicked image cubes listed in Table 1, we
conducted a search for any excess of negative deviations from
the scene mean spectrum at each and every spectral channel in
the 5-µm window, following our procedure discussed in Sec-
tion 5. In sequence S15 (T17) we found one spectral channel, at
4.92 µm, with an excess of negative deviations from the mean
spectrum. The associated pixels also show coherent spatial clus-
tering. Further, this absorption feature correlates well with the
anomalous bright feature known as Tui Regio (Fig. 26), previ-
ously reported and described (Barnes et al., 2006; McCord et
al., 2006a) due to its anomalous brightness at 5 µm and its high
2.8/2.7-µm. This 4.92-µm spectral feature at Tui Regio was in-
dependently noted by one of the authors (J. Barnes, personal
communication), prior to its discovery using the techniques just
described. Fig. 26c shows the scaled difference from the scene
average spectrum, for the channels red = 4.94, green = 4.92,
and blue = 4.90 µm. This figure clearly shows a contiguous
dark feature where Tui Regio appears in the false-color context
image (Fig. 26a). Each of our search methods (simple devia-
tion, scaled difference map, band-fitting) reveals this feature,
although the one-channel deviation map shows the absorption
most clearly, implying a narrow feature centered at ∼4.9 µm.
Fig. 27 shows the spectrum of the negative and positive outliers
found, as well as that of the contiguous Tui Regio feature. The
average 4.92 µm band depth for the Tui Regio feature is just be-
low the whole-scene noise level, defined as 1 SD from the scene
average.

Note that the Tui Regio region has the highest 5-µm re-
flectance on all of Titan, and has 3–5 times the DN of any dark
region (and therefore higher SNR) independent of the exposure
duration. Since the whole-scene standard deviation is calculated
including pixels of much lower albedo, the 4.9-µm feature is
statistically significant when compared to the standard devia-
tion among bright pixels only. Quantitatively, the “noise level”
among all low-phase Titan pixels in the brightness-scaled cube
CM1509136601 is ∼0.0020I/F at 5.01 µm, while the corre-
sponding 1σ level for pixels with 5-µm I/F greater than the
lowest-albedo Tui Regio pixels, is ∼0.0011, or 55% of the
whole-scene SD (cf. Fig. 27). In comparison, the same number
of low-albedo pixels has a SD of ∼0.0027, which gives approx-
imately three times the statistical significance to the 4.9-µm Tui
Regio feature compared to a hypothetical feature in the dark
terrain.

One of the Tui Regio feature’s distinguishing characteristics
is its anomalously high 2.8/2.7-µm band ratio. In the hope that
it might allow identification of other similar features on Titan,
we looked for a correlation between this ratio and the 4.92-µm
band depth. The results (Fig. 28) show there is a linear corre-
lation between the strength of the 4.92-µm absorption and the
2.8/2.7 µm band ratio, within the Tui Regio anomaly. The corre-
lation coefficient R = 0.74±0.06 (95% confidence interval) for
pixels showing the 4.9-µm band, with a corresponding probabil-
ity of non-correlation p � 10−9 (N = 231). Including all pixels
in the scene yields R = 0.70±0.04, with p � 10−9 (N = 576).
This indicates that the material (or complex) responsible for the
4.92-µm feature also has the 2.8/2.7-µm spectral contrast (cf.
Figs. 26b and 26c). Outside the Tui Regio anomaly, the cor-
relation is much lower (R = 0.34 ± 0.08), but still significant.
Though other 5-µm bright anomalies have been observed by
VIMS, their proximity to the limb and/or very lower SNR so
far has precluded measurement of their 4.92-µm band depth.

7.2. Identification of the 4.92-µm feature material: CO2 frost?

A search of spectral libraries does not suggest an obvious
identification of this feature. Of the most likely materials to
be associated with Titan’s surface, CO2 frost has an absorp-
tion closest in wavelength to 4.92 µm (Fig. 29a). The CO2
frost spectra presented here (and in Fig. 3b) are calculated
using a two-stream Delta–Eddington plane albedo model de-
scribed by Wiscombe and Warren (1980) and Hansen (1997)
that we have used in other applications (e.g., Hansen, 2005;
McCord et al., 2006a). We have resampled the CO2 spectrum
to VIMS spectral characteristics. Use of different grain sizes in-
creases or decreases the strength of the absorption in CO2 frost,
with stronger absorption for larger grain sizes, but frosts with
grain sizes larger than about 10 µm have the band saturated, so
that measured I/F is zero. The wavelength position of the CO2
absorption can be shifted, including to match the VIMS Titan
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Fig. 26. The anti-saturnian hemisphere is shown (cube: V1509136601), with the Tui Regio bright feature at center-left; (a) is a false-color context image (red = 5.00,
green = 2.03, blue = 1.28 µm), (b) shows the 2.8/2.7 µm ratio for the same dataset, where Tui Regio is visible as a bright anomaly. The central colored disk in (c)
shows deviations from the whole-scene average spectrum, at the channels red = 4.94 µm, green = 4.92 µm, blue = 4.90 µm. The inset in this panel shows the same
region, from another dataset (TI003). Tui Regio is clearly visible as a dark patch, indicating lower I/F in all three channels, particularly 4.92 µm. Panel (d) shows
the negative (red) and positive (blue) 0.5- (dark) and 1-SD (bright) outliers, using a one-channel linear criterion.

Fig. 27. (a) Average (scaled) 5-µm spectra are shown for the portion of Tui Regio appearing dark blue in the inset of Fig. 26c, as well as the one-channel outliers
from 23 d, and two-channel outliers (not mapped). As usual, dashed black lines indicate one standard deviation from the scene average. (b) The same regions are
plotted as in (a), this time as the difference from the scene average spectrum.
absorption, by bonding in different configurations (solid, liquid,
gas, amorphous) and with different materials including as a re-
sult of radiation damage and associated induced chemistry (cf.
discussions in McCord et al., 1998). It is beyond the scope of
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Fig. 28. Shown here is the correlation of 2.8/2.7-brightness ratio with the depth of 4.92-µm absorption for the Tui Regio feature. This indicates that the material
responsible for the unusual brightness ratio within this methane window also exhibits the absorption.

Fig. 29. An image of the region covered by VIMS IR data set 1514310267 (160 ms integration time) made by averaging all spectral channels between 4.90 and
4.97 µm is shown on the left. On the right is an image of the variations in the 4.94 channel data numbers due to variations in the dark signal.
this article to go further than the suggestion that CO2 is a rea-
sonable candidate for causing this absorption in the VIMS Titan
spectrum.

While CO2 is known to exhibit weak absorptions at ∼1.97,
2.01 and 2.07 µm, these would only reach detectable levels
as the much stronger ∼2.8 and 4.9 µm bands reached satura-
tion. This would occur in the case of large grain sizes and/or
abundances, and is not observed. Fig. 30 illustrates the effect
of convolving each of the 2.0- and the 4.9-µm CO2 bands to
the VIMS spectral response, using the laboratory spectra de-
scribed previously (Hansen, 2005). Although their integrated
absorbances are comparable, the 4.9-µm band is narrower and
therefore more apparent in the VIMS data than the 2-µm bands.
Unfortunately, the effective bandwidth of the convolved 2-µm
absorption is comparable to the width of that methane window,
and would therefore be manifested as a depression in the over-
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Fig. 30. Absorbance and reflectance for pure CO2 ice, derived from optical constants measured in the laboratory by Hansen (2005).
all 2-µm reflectance, rather than as individual absorption lines.
From the preceding argument, in a VIMS spectrum of pure CO2

ice on the surface of Titan, we would expect the 4.9-µm band to
appear stronger than the 2.0-µm bands.

Given their non-detection using the 2.0-µm CO2 lines, Har-
tung et al. placed an upper limit on the spatial coverage of pure,
monolithic CO2 ice deposits, by assuming zero reflectance at
2.012-µm for such a deposit. Based on the ratio of the 1σ noise
level to the surface signal (≈0.07 for bright regions), they calcu-
lated a maximum coverage by pure CO2 of ∼90 thousand km2

per hemisphere for bright regions. By way of comparison, the
surface area of Tui Regio (on the opposite hemisphere) is esti-
mated to be ∼200 thousand km2. Even if Tui Regio were within
the longitude range of the Hartung et al. study (which it is not),
an areal mixture of up to 45% CO2 would be allowed within
their constraints. More realistically, intimate mixing with other
surface materials should weaken, broaden, and shift the 2.012
and 2.070 µm lines, rendering them undetectable by VIMS and
other instruments (Bernstein et al., 2005; see discussion below).
In fact, we do not detect the 2.0-µm features, most likely for this
reason, while the 4.9-µm feature is just above the noise level.

This tentative identification is consistent with the indepen-
dent identification and mapping of a spectral unit with charac-
teristics similar to CO2 frost in the spectral diversity and SMA
analysis discussed earlier in Section 3. It is also consistent with
CO2 affecting the 3-µm spectral region of Titan from telescopic
spectra (Coustenis et al., 2006). The evidence for CO2 is fur-
ther strengthened by noting that the spectrum of CO2 frost can
explain the contrast seen between the 2.8- and the 2.7-µm sub-
windows, which is especially strong at Tui Regio (Fig. 24b
and McCord et al., 2006a). In Fig. 27b we show a CO2 frost
reflectance spectrum overlayed on the 2.8-µm region Titan at-
mospheric transmission, using the same CO2 grain size (2 µm
radius) as for the Fig. 27a plot. The net result would be for
the material to appear brighter in the longer-wavelength half of
the overall window. Again, the contrast could be adjusted by
changing or mixing the grain sizes and/or by mixing with spec-
trally neutral dark material. Smaller grain size CO2 has greater
2.8/2.7 µm contrast and, as for the 4.92-µm feature, grain sizes
over about 10 µm would result in saturation of the features and
would no longer affect the contrast.

Fig. 31 (a, b) shows that the center wavelengths of the CO2

absorption bands are shifted slightly from their nominal posi-
tions in the VIMS data. This shift can be explained by intimate
mixing with other materials, which can alter bond vibrational
frequencies. This phenomenon is observed in the laboratory,
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Fig. 31. A comparison of the laboratory spectrum of CO2 frost and the VIMS spectrum of Tui Regio is shown for two different cases: (a) the Tui Regio region
continuum-removed spectrum with the 4.92-µm absorption shown in Fig. 27 and (b) the reflectance in the 2.8-µm methane window. In Fig. 29a, the Titan absorption
is close to but at a slightly longer wavelength than the CO2 frost absorption. Error bars indicate the uncertainty in measured wavelength position (see text). In
Fig. 29b, it is apparent that CO2 frost would contribute more radiation to the longer-wavelength portion of the spectral window than to the shorter-wavelength
portion. This is consistent with the contrast seen for the Tui Regio region and the material contributing the 4.92-µm absorption.
resulting in wavelength shifts of up to ∼6 nm for H2O/CO2
mixtures (Bernstein et al., 2005). By convolving a wavelength-
shifted CO2 frost spectrum to VIMS spectral resolution, we
estimate the uncertainty in the center wavelength of the ob-
served VIMS ∼4.9-µm band to be 8.5 nm. Combined with
an estimated uncertainty in the VIMS wavelength calibration
of 6.9 nm, this gives a total RMS error of 11 nm. From this,
we report the observed band at 4.920 ± 0.011 µm. Therefore,
if this absorption is attributed to CO2, a wavelength shift of
∼13 nm long-ward from the laboratory-measured band center
of 4.896 µm for pure CO2 ice is required to match the VIMS
band within our estimated uncertainty. This is within a factor
of ∼2 of the shift reported by Bernstein et al. (2005) for mix-
tures with H2O, and therefore similar effects may be occurring
on the surface of Titan.

8. Improvements in VIMS calibration

The data sets used here so far are the VIMS standard prod-
ucts, produced by the so-called “pipeline” processing using the
VIMS standard calibrations. With tedious handwork, one can
improve on this standard product. We have done this for a lim-
ited number of data sets, following methods developed mostly
by G. Hansen first to treat Galileo Mission Near Infrared Map-
ping Spectrometer (NIMS) data and then adapted and applied
to the VIMS data (e.g., Hansen et al., 2005, 2006), to better
illustrate and compensate for some instrumental effects in the
data.

8.1. The method

The standard pipeline VIMS IR channel data calibration sub-
tracts backgrounds taken when the instrument focal plane chop-
per is closed, approximately once per line (Brown et al., 2004).
If a radiation spike occurs during the background measurement,
its effect is propagated throughout the line by background sub-
traction; this is corrected by a routine in the pipeline processor
that detects these spikes and removes their effect. A nominal
despiking of the direct signal data is also performed.

The pipeline does not correct the residual thermal back-
ground of the instrument, which amounts to a 1–2 DN smaller
background (larger signal) at each end of the spectrum (with
more DN at longer integration times).

There are several channels, primarily coincident with chan-
nels that have excessive background current (showing as posi-
tive spikes in the background), that exhibit large variations (5–
50 DN) in dark level. These variations occur for a few to several
pixels at a time, and are not corrected by any pipeline processes
because they affect only a small fraction of a line (Fig. 31).
They can occur repetitively, covering a large (10–40%) portion
of the image at these channels. They can be positive or nega-
tive, depending on the dark level adopted for the channel by the
standard background processing. The unstable darks are local-
ized in time, so they appear as artifacts localized along lines
since the VIMS images are recorded as a raster scan. Because
of their spatial distribution, the unstable darks can affect some
averages more than others, and always affect low DN level av-
erages more. More channels are affected by unstable darks and
the magnitude of the dark variations is greater at larger integra-
tion times.

Residual small spikes not removed in the despiking can also
affect averages, but are always positive, since the negative-
going background spikes should be removed.

The residual thermal background can be corrected by mea-
suring darks from deep space pixels, often on other observa-
tions close in time to the ones being processed. Since they vary
with integration time, it is best to get an average from deep
space observations with the same exposure, although the long-
wavelength portion of thermal signal scales with integration
time fairly accurately.
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Fig. 32. The average spectrum in the 5-µm window is show for each of the
major spectral units derived from the SMA and with one standard deviation
from the mean showed in dashed lines. The data sets treated here were subject
to the recalibration described in Section 8.1. This figure should be compared
with Fig. 11, which is derived using the pipeline processed data.

The unstable darks are harder to determine accurately when
objects are in the field of view. Subtracting a median of the
data from the two channels before and two channels after the
analyzed channel can produce an approximation of the darks,
but this only works if the spectrum varies linearly in the re-
gion. Because of spectral curvature, subtracting a fraction near
one times the local median can result in a better estimate, but
the fractions are often dependent on the type of spectrum (ice,
non-ice, Titan atmosphere, etc.). Where the DNs are small, the
fraction is not as important (so using 1.0 for channels beyond
3 µm is generally effective; see Fig. 31, which is generated this
way).

When the signal is not too large, the difference image
(rounded to the nearest multiple of 3 DN, to limit the propaga-
tion of noise) is subtracted from the data to correct the unstable
darks. For the larger signal channels, an adjacent line averages
within an image can be used to determine and correct unstable
dark regions.

8.2. Application of recalibration method

Some of the VIMS datasets related to this study were re-
calibrated using the method described above. We show here
the results of analyzing these recalibrated data to illustrate the
affects of the instrumental effects as well as to give another
measure of the confidence one can have in the analyses per-
formed here and elsewhere.

We repeated our analysis of the spectral segments for the
5-µm and the 2-µm windows, using recalibrated data. The
resulting 5-µm weighted average spectra of the five spectral
endmembers are plotted in Fig. 32, which is to be compared
with Fig. 9b, produced using the pipeline processed data. The
recalibrated data average spectra are smoother in the long-
wavelength region (with standard deviation >2 times smaller
than in the pipeline calibration), but still show a pronounced
dip at 4.94 µm, which is the channel most troubled by unstable
darks. Thus, it appears that the recalibration can help improve
the data analysis and results but it is not perfect in correcting
for the sometimes erratic nature of a few of the VIMS IR de-
tector performance. The average spectra using the recalibrated
data for the 2-µm window are unchanged from Fig. 9a because
the signal in the 2-µm window is so much greater than in the
5-µm window and the thermal and dark effects are relatively
much smaller.
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