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ABSTRACT

Main-sequence stars earlier than spectral-type ∼F6 or so are expected to rotate rapidly due to their radiative
exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by
up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening
that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk
yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar
rotation pole and the planet orbit normal. This spin–orbit alignment can be used to constrain models of planet
formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar
equator will result in spin–orbit alignment. More violent planet–planet scattering events should yield spin–orbit
misaligned planets. Rossiter–McLaughlin measurements of transits of lower-mass stars show that some planets
are spin–orbit aligned, and some are not. Since Rossiter–McLaughlin measurements are difficult around rapid
rotators, lightcurve photometry may be the best way to determine the spin–orbit alignment of planets around
massive stars. The Kepler mission will monitor ∼104 of these stars within its sample. The lightcurves of any
detected planets will allow us to probe the planet formation process around high-mass stars for the first time.
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1. INTRODUCTION

Fiftyfive transiting extrasolar planets have been discovered
to date (see http://exoplanet.eu/). Most of these planets orbit
stars that have masses near 1 M�. The primary reasons for
this parent star mass bias for transiting planets are twofold:
(1) stars of spectral type later than K are too dim to be caught in
large numbers by wide-field transit surveys and (2) stars earlier
than F have rotationally broadened spectral lines and inherent
stellar noise that make high-precision radial velocity follow-up
impossible at present.

To address the early-star radial velocity problem, Johnson
et al. (2007) used radial velocity to survey evolved high-mass
stars that were formerly early-type dwarfs when they were on the
main sequence. Johnson et al. (2007, 2008a) described 11 known
planets around evolved stars with 1.5 M� < M∗ < 3.0 M�,
presumably former A stars. Since then 14 new planets around
high-mass stars have been found: NGC4349#127b (Lovis &
Mayor 2007), 81 Cetus b (Sato et al. 2008b), NGC2423#3b
(Lovis & Mayor 2007), 18 Delphinus b (Sato et al. 2008a),
HD17092b (Niedzielski et al. 2007), 14 Andromedae b (Sato
et al. 2008b), ξ Aquilae b (Sato et al. 2008a), HD81688b (Sato
et al. 2008a), HD173416b (Liu et al. 2009), HD102272b and
HD102272c (Niedzielski et al. 2009), 6 Lyncis b (Sato et al.
2008b), HD5319b (Robinson et al. 2007), and OGLE2-TR-L9b
(Snellen et al. 2009). The last of these, OGLE-2-TR-L9b, is the
only radial velocity planet whose host star has M∗ > 1.5 M� and
lies on the main sequence (spectral type F3V), and this planet
is the only one that is known to transit a massive star as well.

The Kepler mission will discover many more transiting
planets around early-type stars, if they exist. At least 10,000
main-sequence stars earlier than spectral-type F5 should be
present in the Kepler field, and will presumably be among
the mission’s targets. Kepler will then be able to characterize
the distribution of planets with short periods around high-mass
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stars. These close-in planets will complement the far-out planets
recently discovered around A dwarfs using direct imaging
(Marois et al. 2008; Kalas et al. 2008), and lead to a better
understanding of how planet formation varies with stellar mass.

Main-sequence stars earlier than ∼mid-F spectral type, those
with M � 1.5 M�, are all expected to be fast rotators. The
structure of these stars is such that they have radiative zones
in their outermost layers, instead of a convective zone near the
surface like for our Sun. The exterior convection in later-type
stars drives surface magnetic activity, which in turn drives strong
stellar winds that sap the star’s angular momentum with time.
Early-type, exterior-radiative stars retain their youthful high
angular momenta, with some spinning at near the breakup speed
(e.g., Hansen et al. 2004, and references therein). As a result,
early-type main-sequence stars can be significantly oblate.

The rotation induces an equator-to-pole gradient in the
effective acceleration due to gravity g at the surface. von Zeipel
(1924) showed that in such a case the temperature of the star
varies from equator to pole as well, a phenomenon called gravity
darkening. The von Zeipel theorem thus predicts that the flux
emitted from the surface of a rapidly rotating star is proportional
to the local effective gravity. Thus the effect induces cooler
temperatures (and hence lower emitted fluxes) at a star’s equator,
and hotter temperatures at the poles. The basic predictions of
von Zeipel theory were dramatically confirmed by recent optical
interferometric observations of Vega (α Lyrae; Peterson et al.
2006b, explaining residuals in earlier near-IR interferometry by
Ciardi et al. 2001) and Altair (α Aquilae; Monnier et al. 2007).
Gravity darkening is used regularly to characterize close binary
star systems from their lightcurves (i.e., Djurašević et al. 2003).
In binary systems that interact gravitationally, tides can also
reduce the effective gravity, resulting in gravity darkening.

If planets around fast-rotating stars formed in situ from the
protostellar disk or migrated to their present locations within
that disk, then those planets might be expected to orbit near
their stars’ equatorial planes. If those planets transit, then their
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orbital inclinations i are near 90◦ (using radial velocity teams’
definition of i as the angle between the planet’s orbit pole and
the plane of the sky). The stellar orbit pole would then be nearly
coincident with the planet’s orbit pole, giving a stellar obliquity
ϕ of near 0◦. In transit, such a planet’s chord across its star’s disk
would be perpendicular to the projected stellar rotation pole. In
this paper, I call these “spin–orbit aligned” planets. If planets
have experienced planet–planet scattering events in their past,
however, they might be expected to show significant spin–orbit
misalignment (Jurić & Tremaine 2008).

Rossiter–McLaughlin measurements of the radial velocity
of slowly rotating stars during planetary transits have been
highly successful at determining spin–orbit alignments. Rel-
atively low-precision Rossiter–McLaughlin measurements of
spin–orbit alignment were made by Pont et al. (2009) and
Moutou et al. (2009). Winn et al. (2006, 2007) made early mea-
surements of HD189733 and HD147506, showing them to be
spin–orbit aligned. Johnson et al. (2008b) determined that HAT-
P-1 is nearly aligned (3.◦7±2.◦1). Narita et al. (2009) showed that
HD17156 is nearly spin–orbit aligned, with a misalignment of
10◦ ± 5.◦1. Wolf et al. (2007) determined a similarly misalign-
ment of 12◦ ± 15◦ in the HD149026 system, consistent with
spin–orbit alignment. On the other hand, Hébrard et al. (2009)
showed a striking spin–orbit misalignment of 70◦ ± 15◦ in the
XO-3 planetary system. Highly precise measurements from Tri-
aud et al. (2009) showed a tiny but significant spin–orbit mis-
alignment of 0.◦85 ± 0.◦3 in the CoRoT-3 system. Unfortunately,
Rossiter–McLaughlin measurements will likely be much more
challenging for rapidly rotating stars due to their high inherent
radial velocity noise.

Because more massive stars rotate much faster than the
Sun, the transit lightcurves for the planets that Kepler will
discover around them will be qualitatively and quantitatively
different from those for planets orbiting slowly rotating stars.
Russell (1939) considered this effect for eclipsing binary stars,
and here I consider the effects for transiting planets. Stellar
oblateness will alter the times of transit ingress and egress, and
the overall transit duration, somewhat complementary to the
effects of oblate planets (Barnes & Fortney 2003; Seager &
Hui 2002). When the star’s spin pole and the planet’s orbit pole
are aligned, the von Zeipel effect will cause systematic errors
in radius determinations for the star and the planet, and will
lead to broadband color variations during transit. If the stellar
spin pole and planetary orbit pole are not aligned, then bizarre
transit lightcurves result that can be used to constrain both the
stellar spin pole direction and the spin–orbit alignment. In this
paper, I investigate the effect that a fast-rotating star has on the
lightcurves of transiting extrasolar planets in preparation for the
results expected from Kepler.

2. SYNTHETIC TRANSIT LIGHTCURVES

2.1. Algorithm

In order to generate synthetic transit lightcurves with fast-
rotating stars, I modified the algorithm originally developed
for Barnes & Fortney (2003) and extended in Barnes & Fortney
(2004) and Barnes (2007). The algorithm numerically integrates
the total flux coming from the uneclipsed star, F0, in polar
coordinates centered on the projected center of the star in the
plane of the sky such that

F0 =
∫ Req

0

∫ 2π

0
I (r, θ )dθdr, (1)

Figure 1. Schematic showing transit geometry along with some of the parame-
ters referred to in the text such as planet orbit azimuth α, transit impact parameter
b, stellar obliquity ϕ, stellar rotation rate Ω, equatorial radius Req, and polar
radius Rp.

(A color version of this figure is available in the online journal.)

where Req is the radius of the star at its equator (see Figure 1
for a schematic of some of the geometric variables), r and θ
are measured from the stellar center and counterclockwise from
the x-axis respectively, and I (r, θ ) is the star’s intensity at point
(r, θ ). It then evaluates the apparent stellar flux at time t, F (t),
relative to the out-of-transit flux F0, by subtracting the amount
of stellar flux blocked by the planet from F0:

Fblocked(t) =
∫ Req

0

∫ 2π

0
Γ(r, θ, t)I (r, θ )dθdr (2)

and

F (t) = F0 − Fblocked

F0
, (3)

where Γ(r, θ, t) = 1 if the planet is blocking starlight at position
r, θ, and time t, and Γ(r, θ, t) = 0 if not.

The difference in the case of fast-rotating stars is that the
rotation induces these stars’ equators to bulge outward. Hence
the polar integral in Equations (1) and (2) no longer properly
accounts for the symmetry of the problem. I quantify this effect
here as the star’s oblateness, f, defined to be f ≡ Req−Rpole

Req
where

Rpole is the star’s radius along the rotational pole. I assume
throughout that the star’s resulting shape can be considered as
a MacLaurin spheroid. The value relevant for the integrals in
Equations (1) and (2), though, is the effective oblateness feff ,
which I define to be the apparent oblateness of the star when
projected into the plane of the sky. The effective oblateness is
related to the actual oblateness by the stellar obliquity ϕ, where
ϕ = 0 if the stellar rotation axis resides in the plane of the sky:

feff = 1 −
√

(1 − f )2 cos2 ϕ + sin2 ϕ. (4)

The relationship is not a simple cosine owing to three-
dimensional geometry. I will show how this expression can be
derived a few paragraphs below.
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With feff in hand, it becomes straightforward to incorporate
the stellar asphericity. In order to avoid complex and computa-
tionally intensive elliptical integrals, I execute a substitution for
r and θ in Equations (1) and (2). I instead choose to integrate
over r ′ and θ ′, where r ′ and θ ′ are chosen so as to “pop” the star
into a spherical shape in r ′–θ ′ space. To do this, I first convert
the true projected r and θ measured from the star’s center into
x = r cos θ and y = r sin θ . I assume that the projected stellar
rotation axis is parallel to the y-axis for simplicity—the true ori-
entation will not be known, in general, but does not matter since
it does not affect the measured stellar flux. I then let x ′ = x and

y ′ = y

(1 − feff)
, (5)

and then set r ′ =
√

x ′2 + y ′2 and θ ′ = atan2(y ′, x ′), where
atan2 is the C computer language arctangent function that
returns a true 4-quadrant-capable angle from x and y values.
The substitution in Equation (5) works equally well if you were
to choose to integrate the stellar flux in Cartesian xy-coordinates
instead of the polar integral that I use.

Equations (1) and (2) now become

F0 = (1 − feff)
∫ Req

0

∫ 2π

0
I (r ′, θ ′)dθ ′dr ′ (6)

and

Fblocked(t) = (1 − feff)
∫ Req

0

∫ 2π

0
Γ(r ′, θ ′, t)I (r ′, θ ′)dθ ′dr ′.

(7)
The (1 − feff) factor is introduced by the coordinate transfor-
mation: “popping” the oblate star out into a circle overestimates
its projected area, and hence the emitted flux, by (1 − feff)−1.
In the end the factor is irrelevant. When the results are plugged
into Equation (3), it drops out. Hence the lightcurve generation
algorithm as implemented does not use the factor (1 − feff)
explicitly at all.

All that is left then is to determine I (r ′, θ ′) and then to
integrate it. Obtaining I (r, θ ) is straightforward but nontrivial.
I first break out the stellar limb darkening from the normal
emission and assume blackbody radiation

I (r ′, θ ′) = Bλ(T (r ′, θ ′))L(r ′, θ ′) (8)

where Bλ(T) is the blackbody function (or your desired stellar
emission as a function of temperature at a given wavelength),
T (r ′, θ ′) is the temperature at a given point on the stellar
disk, and L(r ′, θ ′) is the stellar limb darkening at that point.
It would be possible to incorporate a more realistic stellar
emission spectrum rather than to assume it to be a blackbody, but
since rapidly rotating stars are mostly of early spectral types,
the differences are not significant at the level of the present
investigation.

A modified version of the von Zeipel theorem (von Zeipel
1924) determines the stellar temperature T at every point. The
temperature on the surface of a rapidly rotating star is given by
Maeder (2009):

T = Tpole
gβ

g
β

pole

, (9)

where g is the magnitude of the local effective surface gravity,
and Tpole and gpole are the pole’s temperature and surface gravity,
respectively. The value β is known as the gravity-darkening

parameter. Its nominal value is 0.25 for a purely radiative
star, as derived by von Zeipel; for our numerical calculations
I use an empirically measured β, as detailed below. The local
surface gravity vector 	g has two terms: one Newtonian and one
centrifugal:

	g = −GM∗
R2

r̂ + Ω2R⊥r̂⊥, (10)

where G is the universal gravitational constant, M∗ is the stellar
mass, Ω is the stellar rotation rate in radians per second, R is the
distance from the star center to the point in question, and R⊥ is
the distance from the star’s rotation axis to the point in question.
The two hatted symbols, r̂ and r̂⊥ are unit vectors pointing to the
point in question from the stellar center and the stellar rotation
axis, respectively.

So, then, to know I you need to know g, and to know g you
need to know the three-dimensional vector position of each point
that you see on the star. In this case, you already know r ′ and
θ ′, from which you can trivially derive x and y, the location of
two-dimensional projection in the plane of the sky of the point
of interest with respect to the center of the star. What is left then
is to determine z. This is nontrivial.

The geometrical constraint on z is that its value must conform
to the surface of an oblate spheroid given x, y, the stellar radius
Req, and the oblateness f. This is easy enough when the stellar
obliquity is zero, and thus when the y-axis is parallel to the
stellar rotation axis. So I define a new set of coordinate axes
with the same origin as the x–y–z system, at the center of the
star. However, this new system is rotated in the y–z plane (i.e.,
around the x-axis) by an angle ϕ, the star’s obliquity to the plane
of the sky. Call this the x0, y0, z0 system, where

x0 ≡ x,

y0 ≡ y cos(ϕ) + z sin(ϕ), and

z0 ≡ −y sin(ϕ) + z cos(ϕ). (11)

In this new obliquity rotated coordinate system, the surface of
the star’s photosphere follows

x2
0 +

y2
0

(1 − f )2
+ z2

0 = R2
eq. (12)

Plugging the definitions of x0, y0, and z0 from Equations (11)
into Equation (12), I solve for z in terms of known x and y. The
solution to the resulting quadratic is

z = −2y(1 − (1 − f )2) sin ϕ cos ϕ +
√

d

2((1 − f )2 cos2 ϕ + sin2 ϕ)
, (13)

where the determinant d is

d ≡ 4y2(1 − (1 − f 2))2 sin2 ϕ cos2 ϕ

− 4((cos2 ϕ(1 − f )2 + sin2 ϕ)

× ((
y2 sin2 ϕ − R2

eq + x2)(1 − f 2) + y2 cos2 ϕ)
)
. (14)

I choose the positive root of the determinant as the negative root
represents the invisible second interception of the line of sight
with the photosphere that occurs on the backside of the star as
seen from the Earth. Equation (4) can be derived by setting the
determinant d equal to zero to establish the outer edge of the
star’s disk as seen from the Earth, and then solving for the proper
feff to reproduce that disk.

Now I have all of the necessary parameters to compute the flux
coming from each point on the star. To do so, at each x, y point
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Figure 2. Synthetic lightcurves for transiting 1 RJup in a spin–orbit aligned 0.05 AU orbit around an Altair-like star are plotted. The four curves correspond to planets
with transit impact parameters of b = 0.0 Rpole (solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). The curves’ shapes are
indistinguishable from transits of slow-rotating, spherical stars using different parameters. Transits nearer to the pole are deeper because the stellar photosphere is
hotter there due to the van Zeipel effect.

(A color version of this figure is available in the online journal.)

use Equation (13) to get z, and then plug z into Equations (11)
to get x0, y0, and z0. Do the vector addition to get 	g from
Equation (10) in x0, y0, z0 space where

	R ≡ x0

R
î0 +

y0

R
ĵ0 +

z0

R
k̂0,

	R⊥ ≡ x0

R⊥
î0 +

z0

R⊥
k̂0,

R ≡
√

x2
0 + y2

0 + z2
0,

R⊥ ≡
√

x2
0 + z2

0.

Then plug g ≡ |	g| into von Zeipel’s equation (Equation (9)) to
get T, and then derive a flux from T using a blackbody curve or
your choice of a more sophisticated emitted flux.

2.2. Parameters

In order to generate appropriate and representative lightcurves
that can be used for comparison to transits yet undiscovered, I
calculate all transit lightcurves as if the parent star were Altair
(α Aquilae). The true host stars for Kepler-detected transiting
planets will show varying stellar masses, polar temperatures,
radii, and rotation rates. I elect to use Altair because I think that
its spectral type (A7V) is broadly representative of the major-
ity of the expected fast-rotating stars in the Kepler sample, and
because its parameters are well characterized by interferomet-
ric imaging (Monnier et al. 2007). Not all sets of parameters
produce physically plausible stars; I avoid non-physical combi-
nations by only using this one set of known stellar values.

The specific stellar parameters that I use are M∗ = 1.8 M�
(Peterson et al. 2006a), Req = 2.029 R�, Tpole = 8450 K,
β = 0.190, f = 0.1947, and a stellar rotation period of 8.64 hr
(all as directly measured for Altair by Monnier et al. 2007).
For the planet, I assume Rp = RJup and an orbit semimajor
axis of 0.05 AU (corresponding to a period of 3.04 days) for
familiarity with the lightcurves of known transiting hot Jupiters.
Transit lightcurve shapes are invariant with orbit period; only

the timescale changes. Hence the curves that I show here can be
converted for different-period planets by stretching the x-axis.

In fitting I adjust for the c1 and c2 limb darkening coefficients
outlined in Brown et al. (2001). I generate the synthetic
lightcurves using c1 = 0.640 and c2 = 0.0. I also assume
monochromatic observation at 0.51 μm wavelength except
where otherwise noted.

3. SPIN–ORBIT ALIGNED

I show synthetic transit lightcurves of planets in spin–orbit
aligned geometries in Figure 2, for various transit impact
parameters b. The lightcurves are symmetrical. Furthermore,
since the parts of the star that the planet transit chord passes over
all have the same temperature because they equidistant from
the stellar rotation pole, the transit bottom shows normal limb-
darkening curvature. As a result, the specific lightcurve shapes
for spin–orbit aligned transiting planets are indistinguishable
from those for planets orbiting spherical, slow-rotating stars.

The transit depths and durations are different, though. In
particular, the transit depth it increases with impact parameter,
opposite of the case for spherical stars. If you were to fit these
lightcurves assuming a spherical star, then the resulting best-fit
transit parameters would be different from the actual ones. In
order to show this effect, I fit the synthetic transit lightcurves
show in Figure 2 using a Leavenberg-Marquardt chi-squared
minimization scheme from Press et al. (1992) as described
in Barnes & Fortney (2003) and show the resulting best-fit
parameters in Table 1.

For planets transiting across the center of the star (b = 0.0),
the best-fit parameters retain easily interpreted astrophysical
meaning. The ratio of radii Rp/R∗ comes from the total transit
depth, which in this case is nearly identical to that for the case
of a b = 0.0 transit across a spherical star with radius equal
to the equatorial radius of the fast-rotating star. In that case,
while using the Altair parameters that I use here, the total larger
projected area of the stellar disk makes up for lower flux coming
from the polar regions, yielding similar net stellar flux. The
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Table 1
Best-fit Transit Parameters Assuming Spherical Star for Various Transit Geometries

Stellar Planet’s Transit Best-Fit Parameters
Obliquity Azimuth Impact Limb Limb

(ϕ, ◦) (α, ◦) Parameter R∗ Rp Inclination Dark 1 Dark 2
(b, Rpole) R� RJup (i, ◦) c1 c2

0◦ 0◦ 0.0 Rpole 2.050 R� 0.999 RJup 88.◦23 0.612
0◦ 0◦ 0.3 Rpole 2.014 R� 1.034 RJup 86.◦95 0.621
0◦ 0◦ 0.6 Rpole 1.970 R� 1.141 RJup 84.◦07 0.626
0◦ 0◦ 0.9 Rpole 1.937 R� 1.291 RJup 80.◦94 0.582

30◦ 0◦ −0.9 Rpole 1.91 R� 1.27 RJup 81.◦70 0.826 1.000 *
30◦ 0◦ −0.6 Rpole 2.02 R� 1.24 RJup 84.◦01 0.834 1.000 *
30◦ 0◦ −0.3 Rpole 2.08 R� 1.16 RJup 85.◦93 0.805 1.000 *
30◦ 0◦ 0.0 Rpole 2.04 R� 1.02 RJup 88.◦70 0.723 1.000
30◦ 0◦ 0.3 Rpole 2.02 R� 1.01 RJup 89.◦97 0.726 0.859
30◦ 0◦ 0.6 Rpole 2.123 R� 0.987 RJup 83.◦05 0.465
30◦ 0◦ 0.9 Rpole 2.143 R� 1.059 RJup 80.◦19 0.268

90◦ 0◦ 0.0 Rpole 2.30 R� 1.17 RJup 80.◦30 0.916 1.000 *
90◦ 0◦ 0.3 Rpole 2.06 R� 1.00 RJup 84.◦63 1.000 1.000 *
90◦ 0◦ 0.6 Rpole 2.05 R� 1.01 RJup 87.◦10 1.000 1.000 *
90◦ 0◦ 0.9 Rpole 2.04 R� 1.01 RJup 89.◦47 1.000 1.000 *

0◦ 90◦ 0.0 Rpole 1.89 R� 1.12 RJup 84.◦57 −1.000 −1.000 *
0◦ 90◦ 0.3 Rpole 1.91 R� 1.11 RJup 84.◦00 −1.000 −1.000 *
0◦ 90◦ 0.6 Rpole 1.92 R� 1.04 RJup 82.◦94 −1.000 −1.000 *
0◦ 90◦ 0.9 Rpole 1.85 R� 0.91 RJup 82.◦12 −0.585 −1.000 *

Notes. Tabled here are the best-fit parameters R∗, Rp, i, c1, and c2 for fits assuming spherical stars of
synthetic lightcurves of hypothetical Altair-planet systems with Rp = RJup and the planet at 0.05 AU. The
stellar obliquity to the plane of the sky ϕ for each synthetic curve is listed at left, followed by the angle α

between the planet’s orbit pole and the stellar rotation axis projected into the plane of the sky. When fixing
c2 at zero and fitting only for c1 resulted in a high-quality fit to the data, c2 is not listed. Fits that have a
“*” next to their value for c2 did not produce good fits even with the second limb darkening parameter.

fitting algorithm thus gets Rp/R∗ correct, assuming R∗ = Req

and not the real average radius of the projected disk, (1− f

2 )Req .
The total duration of the transit and the duration of ingress
and egress fix the impact parameter, which the fit correctly
determines to be near 0.0 (i ∼ 90◦), and the stellar radius,
which is very close to the star’s true equatorial radius. Hence
the planetary radius also comes out correctly. Limb darkening is
right because of the same-temperature effect described above.

As I consider higher and higher impact parameters, shown
in Figure 2 as fractions of Altair’s polar radius 1.63 R�, the
best-fit parameters deviate further and further from the actual
values. As the planet transits across hotter, brighter parts of the
stellar photosphere near the pole, the best-fit value for planet
radius increases by up to 30% above the input planet radius. The
stellar radius, driven by the somewhat longer transit durations,
drops slightly but stays closer to the input star’s equatorial radius
than it does to the true average radius of the stellar disk. Less
importantly, the inclination and limb darkening parameter are
somewhat underestimated.

The end result of these calculations is that if the planets
orbiting fast-rotating stars are spin–orbit aligned, it may not be
evident at first glance. The transit lightcurves will not stick
out. Instead the measured transit parameters’ errors will be
systematic in nature, and the fits will still be good.

If the spin–orbit aligned planet case turns out to be prevalent
around fast-rotating stars in the Kepler sample, then measuring
the spin–orbit alignment for planets will require a separate iden-
tification of the star’s fast-rotating status. Kepler’s photometric
precision should be good enough to identify the star’s rotation
rate in long time series photometry. If the planets transiting
those stars show normal-looking lightcurves, that would indi-

cate that the planet is spin–orbit aligned. If most or all planets
are spin–orbit aligned, then they likely either formed in situ or
migrated there, and were not scattered by close encounters with
other planets.

4. SPIN–ORBIT MISALIGNED

If instead the transiting planets around fast-rotating stars
experienced close encounters that threw them out of spin-
aligned orbits, then more exotic lightcurves result. Recent
R–M results from transiting planetary systems indicate that
this situation may be more common than previously thought
(Hébrard et al. 2009). Given the difficulty of radial velocity,
and thus R–M, measurements around early-type stars, transit
photometry may then be the best way to measure the spin–orbit
alignment in those systems.

4.1. Symmetric

Just because the transit lightcurve of a planet around a fast-
rotating star is symmetric does not mean that the planet is spin–
orbit aligned. Any planet whose transit chord is perpendicular
to the projected stellar rotation pole, i.e. for which the angle
between the transit chord and the projected pole, α, is 0.◦0, will
show a symmetric lightcurve. I plot the lightcurve for a few such
hypothetical planets in Figures 3 and 4. Figure 3 shows planets
around a star with obliquity ϕ = 30◦. Figure 4 shows transits
for a star viewed pole-on with ϕ = 90◦.

Although these lightcurves are symmetrical about the mid-
transit point, unlike the spin-aligned case they are not well-fit
using a model that assumes a spherical star. In the ϕ = 30◦
case the stellar obliquity removes the symmetry in the stellar
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Figure 3. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 30◦ are plotted. The seven curves correspond to planets
with transit impact parameters of b = −0.9 Rpole (thick dotted), b = −0.6 Rpole (thick dot-dashed), b = −0.3 Rpole (thick dashed), b = 0.0 Rpole (thick solid),
b = 0.3 Rpole (dashed), b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). The curves’ shapes start to differ from those of transits of slow-rotating, spherical
stars. The ingress and egress of transits at the opposite impact parameter are nearly the same. The transit bottoms differ. Transits near the hot stellar north pole are
deep and show severe curvature of the transit bottom.

(A color version of this figure is available in the online journal.)
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Figure 4. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 90◦ (pole-on) are plotted. The four curves correspond to
planets with transit impact parameters of b = 0.0 Rpole (solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). The lightcurves show
a pronounced “U” shape that is typically considered to be characteristic of grazing eclipsing binary stars rather than planets. The extreme curvature of the usually flat
planet transit bottom makes the locations of second and third contacts difficult to discern. Due to symmetry around the stellar pole, all transits with the same impact
parameters will look the same regardless of α.

(A color version of this figure is available in the online journal.)

disk, thereby making transits toward the north and south poles
distinct from one another. I arbitrarily choose to define those
transits toward the north of the center of the stellar disk to
have a negative impact parameter so as to differentiate the two
possible cases.

In the positive impact parameter cases in Figure 3, the planet
crosses the cooler equatorial regions of the star. Hence those
transits are relatively shallow. The geometry of the orthographic
projection of the star as seen from Earth means that for the high
impact parameter, b = 0.6 Rpole and b = 0.9 Rpole cases,
the planet covers more southerly stellar latitudes at ingress and
egress than it does at mid-transit. Because those more southerly

latitudes are hotter, the net result is a flatter lightcurve bottom
than occurs for spherical stars with the same limb darkening
parameter (c1 = 0.640). The flatness appears as a lower limb
darkening parameter c1 in Table 1. For the b = 0.6 Rpole and
b = 0.9 Rpole cases the model overestimates the star’s radius;
the best-fit radius is greater than even the star’s equatorial radius.

For b = 0.0 Rpole and b = 0.3 Rpole in the ϕ = 30◦ case,
the planet transits closer to the star’s north pole, and hence the
transit depth becomes progressively greater. The ingress and
egress are again at more southerly latitudes than mid-transit.
But now mid-transit is north of the equator, so the ingress and
egress are cooler than mid-transit, enhancing the curvature of
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Figure 5. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 0◦ (equator-on) are plotted, similar to Figure 2, but
this time with an azimuthal angle of α = 90◦. The four curves correspond to planets with transit impact parameters of b = 0.0 Rpole (solid), b = 0.3 Rpole (dashed),
b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). This unlikely 90◦ transit geometry also produces symmetric transit lightcurves, albeit highly unusual ones.
These curves are deepest near second and third contacts, and shallow at mid-transit. If assuming a spherical-star model, then the interpretation of this “double-horned”
structure might be a negative limb-darkening coefficient possibly associated with a temperature inversion in the stellar atmosphere; however, such a model fits these
data very poorly (see the text).

(A color version of this figure is available in the online journal.)

the lightcurve bottom. I was unable to find satisfactory fits to
either of these synthetic lightcurves using just the first Brown
et al. (2001) limb darkening coefficient c1 alone, even though
it was the only one used to generate the synthetic lightcurve.
However, by allowing the fitting algorithm to optimize c2 as
well I managed to find reasonable fits for b = 0.0 Rpole and
b = 0.3 Rpole.

When fitting b = −0.3 Rpole, b = −0.6 Rpole, and b =
−0.9 Rpole not even two-limb-darkening fits were acceptable.
The curvature on these transits is so extreme that even though
they are symmetric, they are discernable from reasonable
spherical-star models because of the severity of their curvature.
In fact, the curvature of these planets’ transit bottoms are so
severe that the lightcurves look “V”-shaped instead of “U”-
shaped. The transit bottom is difficult to discern. The resulting
rounded shape might be mistaken for an eclipsing binary star.

Fits for transits of pole-on oriented fast-rotating stars are
similar. As shown in Figure 4, the center of the stellar disk is
particularly bright relative to the limb owing to the center being
the hot pole and the limb being the cool equator. Thus here again
the curvature of the transit lightcurve between second and third
contacts is large, and cannot be satisfactorily fit by a spherical-
star model. In both these cases the difficulty in identifying these
type of planetary transits in the Kepler data will probably be
recognizing that they are not eclipsing binaries, not in thinking
that they are planets around spherical stars.

An observer would also measure a symmetrical transit
lightcurve if a planet orbits a zero obliquity (ϕ = 0.◦0) star
such that its orbit plane contains the stellar rotation pole, i.e.,
with α = 90◦. I show synthetic lightcurves for such a situation
in Figure 5. These are strange transits. By moving parallel to the
star’s orbit pole, the planets first encounter the limb-darkened
edge of the star. Shortly after second contact, they cover the
brightest part of the stellar photosphere underneath the transit

chord. The lightcurve is deepest there. Over the equator at mid-
transit the transit depth is shallow, and then the process repeats
itself backwards on egress.

The resulting lightcurve has a “double-horned” structure that
bears a resemblance to what a transit across a limb-brightened
star would look like. However, spherical-star model fits cannot
reproduce the specific structure. In particular, a limb-brightened
star would have sharp points at second and third contacts where
the derivative is discontinuous and changes sign. The fast-
rotating star ϕ = 0◦, α = 90◦ transits in Figure 5 instead
have rounded horns at second and third contact owing to
the combination of limb- and gravity-darkening. The resulting
rounded double-horn shape is both characteristic and diagnostic
of this kind of transit.

4.2. Asymmetric

If the stellar orientation and transit chord have more exotic
geometries, then highly unusual asymmetric lightcurves result.
A star with obliquity ϕ = 30◦ and transit chord azimuth α = 90◦
(motion parallel to the projected stellar rotation axis) presents
an easy such case to visualize (Figure 6). Because the stellar
disk presents only a left-right symmetry, these transits pass over
very different photospheric temperatures in the first half of the
transit relative to the second half.

In the ϕ = 30◦, α = 90◦, impact parameter b = 0.0 Rpole
case, the planet first crosses a darkened stellar limb before
occulting the star’s hot north pole. The resulting lightcurve is
deepest at this point. After mid-transit the planet occults the
cool equator for a shallower transit depth, but then the depth
increases again near third contact as the planet covers higher
southern latitudes near the southern stellar limb. The same
process occurs in a more abbreviated fashion as the impact
parameter b increases.
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Figure 6. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 30◦ are plotted, similar to Figure 3, but this time with
an azimuthal angle of α = 90◦. The four curves correspond to planets with transit impact parameters of b = 0.0 Rpole (solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole
(dot-dashed), and b = 0.9 Rpole (dotted). The resulting lightcurves are highly asymmetric, being deeper on the side of the lightcurve where the planet passes over the
hot northern stellar pole.

(A color version of this figure is available in the online journal.)
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Figure 7. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with obliquity 30◦ are plotted, similar to Figure 3 but an azimuthal
angle of α = 60◦. The seven curves correspond to planets with transit impact parameters of b = −0.9 Rpole (thick dotted), b = −0.6 Rpole (thick dot-dashed),
b = −0.3 Rpole (thick dashed), b = 0.0 Rpole (thick solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). With this oblique azimuth,
the photometric lightcurve center does not correspond with the point where the planet is nearest to Earth. The lightcurves show a diversity of complex asymmetric
shapes as a function of the impact parameter.

(A color version of this figure is available in the online journal.)

If the transit chord azimuth is oblique, then the lightcurves
can become quite complex as shown in Figure 7. The central
b = 0.0 Rpole transit resembles those from Figure 6. The
more northerly transits (those defined to have negative impact
parameters) also show strong lightcurve asymmetries, with
deep first halves and shallowing second halves. Some of the
lightcurves turn over again near third contact, but the ones with
more negative impact parameters do not.

For positive, more southerly impact parameters, the depth
asymmetry decreases. Further from the hot pole, the temper-
atures under the transit chord are more uniform. The b =

0.9 Rpole transit is particularly interesting. It shows a nearly
uniform depth in time, but while the ingress is long and gen-
tly curving, the egress is abrupt. A higher photometric preci-
sion would be required to definitively identify such a transit
lightcurve as being one from a fast-rotating star than would
be necessary for some of the more spectacularly asymmetric
lightcurves.

With oblique azimuths also come uncentered lightcurves.
Because of the stellar oblateness, the center of these transits does
not occur at the time of the planet’s inferior conjunction, that
is, when the planet is closest to the Earth. The total discrepancy
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Figure 8. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star are plotted, similar to Figure 7 but with an obliquity ϕ = 0◦. The
seven curves correspond to planets with transit impact parameters of b = −0.9 Rpole (thick dotted), b = −0.6 Rpole (thick dot-dashed), b = −0.3 Rpole (thick dashed),
b = 0.0 Rpole (thick solid), b = 0.3 Rpole (dashed), b = 0.6 Rpole (dot-dashed), and b = 0.9 Rpole (dotted). Due to the symmetry of the stellar disk in this case, the
b = 0.0 Rpole case shows a symmetric lightcurve, and positive impact parameters have time-reversed lightcurves when compared to their negative counterparts.

(A color version of this figure is available in the online journal.)
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Figure 9. Synthetic lightcurves for transiting 1 RJup in a 0.05 AU orbit around an Altair-like star with ϕ = 60◦ are plotted. The four curves all correspond to planets
with a transit impact parameter of b = −0.3 Rpole. The different curves correspond to what a lightcurve would look like if it were acquired at different wavelengths:
0.25 μm (solid line), 0.375 μm (dotted line). Note that wavelength is all that is changed here—in particular, I have employed the identical limb darkening parameter
of c1 = 0.64 for each wavelength. Though this is unphysical in that the limb darkening should diminish with increasing wavelength, this way makes it easiest to
identify just the differences due to wavelength changes. The contrast on the stellar disk is greater on the Wien (short wavelength) end of the blackbody curve, while
the contrast is muted on the Rayleigh–Jeans (long wavelength) side.

(A color version of this figure is available in the online journal.)

can be up to a few tenths of the total transit duration, depending
on the stellar oblateness and the transit geometry.

The oblique azimuth transits of fast-rotating stars also intro-
duce an asymmetry in the duration of transit ingress and egress.
This effect comes about because the angle between the stellar
limb and the transit chord is different in ingress and egress,
thereby causing the transiting planet to take different amounts
of time to cross the limb in each case.

Lightcurve asymmetries can occur in zero-obliquity (ϕ = 0◦)
stars as well when the transit chord azimuth is oblique. I show
such a case in Figure 8, with ϕ = 0◦ and α = 60◦. The

central b = 0.0 Rpole transit is symmetric, similar to those
from Figure 5. Non-central transits are asymmetric and resemble
those from Figure 6 with one-half of the transit being deeper
than the other. In this ϕ = 0◦ oblique case, the transits with
negative impact parameter are the time inverse of those with
positive impact parameter.

5. COLOR EFFECTS

Due to the temperature non-uniformity across the stellar
disk, transit lightcurves around rapidly rotating stars differ as
a function of wavelength. I show an example of this effect in
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Figure 9. While a hotter blackbody radiates more flux at all
wavelengths than a colder one, the flux ratio (hotter over colder)
is greater at the Wien end of the blackbody curve. Hence the
effects of rapid rotation in transit lightcurves are maximized at
short wavelengths.

At wavelengths much longer than the blackbody emission
peak, the flux ratio between the hotter and colder areas ap-
proaches the temperature ratio in kelvin. Utilizing multiple
wavelength lightcurve observations would strongly constrain
the temperature structure on the stellar disk in addition to the
transit parameters. This effect will be important when fitting
for a fully consistent model for the star (instead of assuming
Altair’s parameters as I do in this paper).

6. CONCLUSION

The gravity-darkening effect for rapidly rotating, oblate stars
first predicted by von Zeipel (1924) allows for highly unusual
lightcurves when such a star is transited by an extrasolar
planet. The distinctive lightcurves allow for a solely photometric
determination of the relative alignment between the stellar spin
axis and the planet’s orbit normal (spin–orbit alignment), a
measurement that usually requires radial velocity measurements
of the R–M effect. The alignment bears a fingerprint of the
planet’s formation and evolution. Planets that form in an orderly
fashion and migrate within a disk ought to end up coplanar with
the stellar equator. Those that have experienced planet–planet
scattering events ought in general to not be spin–orbit aligned.

Spin–orbit aligned planets around fast-rotating stars show
lightcurves that resemble those of planets orbiting slow-rotating
stars so closely that the two cannot be distinguished based
on lightcurves alone. However, fitting the lightcurves of the
planets around fast rotators with a spherical-star model yields
incorrect transit parameters. The significant systematic errors
introduced into the determination of the planet’s radius are
particularly distressing, especially at high impact parameters.
This degeneracy can be resolved by independent determination
of the stellar rotation period.

Planets that are not spin–orbit aligned can lead to spectacu-
larly strange lightcurves that might not otherwise be immedi-
ately recognizable as planetary transits. Such planets can yield
asymmetric lightcurves and highly curved transit floors that
rule out the spherical-star hypothesis. The precise shape of such
transits reveals the stellar obliquity and the angle between the
transit chord and the projected stellar rotation axis. Together
these two values determine the net spin–orbit alignment of the
system. There is still a twofold degeneracy of the system, re-
flected around the projected stellar rotation axis.

The changing temperatures across the face of the stellar disk
lead to strong variability of transit lightcurves as a function
of wavelength. Multi-wavelength transit photometry can then
directly constrain the stellar temperatures, allowing for better
models of the stars themselves. High-quality stellar models lead
to more reliable measurements of the planet’s radius.

Perhaps ∼5%–10% of the Kepler target stars ought to be
main-sequence dwarfs of spectral type early F or earlier, and
thus are probably rapid rotators. Determination of the spin–orbit
alignment of planets orbiting these stars will provide a glimpse
into the planet formation process around high-mass stars for the
first time.
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