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We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous
work has shown that the Earth’s Moon stabilizes Earth’s obliquity such that it remains within a narrow
range, between 22.1� and 24.5�. Without lunar influence, a frequency map analysis by Laskar et al. (Las-
kar, J., Joutel, F., Robutel, P. [1993]. Nature 361, 615–617) showed that the obliquity could vary between
0� and 85�. This has left an impression in the astrobiology community that a big moon is necessary to
maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator
mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for
up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over
100,000 year timescales, the obliquity remains within a constrained range, typically 20–25� in extent,
for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary
orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by
frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are
more stable than those of prograde rotators. The total obliquity range explored for moonless Earths with
rotation periods less than 12 h is much less than that for slower-rotating moonless Earths. A large moon
thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant
to the development of advanced life.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Inhabitants of Earth enjoy a relatively benign and stable climate
in part because our planet’s obliquity, W, which is the angle be-
tween its orbital angular momentum and its rotational angular
momentum, does not vary by a large amount. In contrast, the
obliquity of Mars ranges from �0� to 60� (Laskar et al., 1993b,
2004). The value of W is an important factor in determining climate
and habitability. For W < 54� or W > 126�, a planet on a low-eccen-
tricity orbit receives more radiant energy from its star (averaged
over time) at equatorial latitudes than near its poles, while the
poles are heated most for obliquities 54� < W < 126�. In contrast,
the poles receive very little light for W near 0� or near 180�
(Fig. 1). (See Dobrovolskis (2009) for a discussion of the illumina-
tion of high-obliquity planets.)

Theoretical analyses have not yet determined whether terres-
trial planets are formed with a preference for low W, as Earth
and Mars have at the present epoch (Schlichting and Sari, 2007),
or whether the rotation axes of rocky bodies are essentially ran-
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domly distributed (Lissauer et al., 1997, 2000). Recent numerical
studies suggest that distribution of orientations of initial rotation
axes may well be isotropic (Miguel and Brunini, 2010). Stellar tides
affect the obliquity evolution of close-in planets like Mercury and
Venus – these effects are beyond the scope of our present work.

Torques from the pull of other planets on the equatorial bulge of
a planet can alter its axial tilt. Therefore, W does not necessarily re-
main fixed subsequent to the epoch of planetary accretion. Laskar
and Robutel (1993) analyzed possible obliquity variations of the
planets in our Solar System. Their study also considered the same
planets with different rotation periods, and the Earth without the
Moon. Using frequency map analysis, they found that the obliquity
of Mars can range from 0� to 60�, and a hypothetical moonless
Earth’s axial tilt could be close to 0� or as large as 85� (Laskar
and Robutel, 1993; Laskar et al., 1993b). In contrast, W of the actual
Earth varies far less, from 22� to 24.6�, because of the Moon’s sta-
bilizing influence (e.g., Laskar et al., 1993a,b). Numerical integra-
tions (Laskar et al., 2004) have shown that Mars’s obliquity
varies over most of its permitted range on timescales of tens of mil-
lions of years. Neron de Surgy and Laskar (1997) show that tidal
evolution of the Earth–Moon system is expected to drive the
Earth’s rotation into the chaotic zone within 1.5–4.5 Gyr, leading
to the likelihood of excursions of Earth’s obliquity to values above
80� at some point within the next �6 Gyr.
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Fig. 1. Yearly averaged solar flux (normalized) for a hypothetical planet with
varying obliquities of 0� (dashed line), 30� (dotted line), 60� (dot-dashed line), and
90� (solid line). The greatest flux disparity occurs at W = 0�; the most nearly even
flux distribution occurs near W = 54�. Note, however, that seasonal variations in
diurnally averaged solar flux are larger for higher obliquity.
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It has been asserted that the presence of a large moon may be
required for Earth (Laskar et al., 1993b), or indeed any terrestrial
planet (Ward and Brownlee, 2000) to have a stable enough obliq-
uity and benign enough climate for advanced life to develop, and
astrobiology textbooks often state that climate stability for moon-
less earthlike planets with rotation periods comparable to 24 h
have wild swings in obliquity (Goldsmith and Owen, 2002; Lunine,
2005). If a large moon is indeed needed to make a planet a viable
abode, then the number of habitable planets in our galaxy capable
of nurturing advanced life is likely to be one or two orders of mag-
nitude lower than if no such requirement exists.

We thus study herein the long-term obliquity evolution of a
moonless Earth with constant rotation rate numerically using a
variant of the symplectic orbital integrator mercury programmed
to implement the algorithm of Touma and Wisdom (1994). We de-
scribe this algorithm and the parameters that we use in Section 2.
Section 3 describes the ±2 Gyr integration of a ‘‘standard’’ moon-
less Earth (‘‘Earthmoo’’). We study chaotic effects using integra-
tions with slightly different initial conditions in Section 4. We
also investigate substantively differing sets of initial conditions,
including varying the initial rotational axis azimuth (Section 5),
obliquity (Section 6), and planetary rotation rate (Section 7). Con-
cluding remarks are presented in the final section.
2. Methods

2.1. Spin-tracking

The evolution of Earthmoo’s obliquity is calculated using a
modified version of the mixed-variable symplectic (MVS) integra-
tor that we have incorporated into the mercury package devel-
oped by Chambers (1999). The MVS algorithm is a descendant of
the symplectic mapping of Wisdom and Holman (1991). The Earth
is treated as an axisymmetric rigid body, and its orbital and rota-
tional evolution is calculated, subject to gravitational interactions
with the Sun and planets, following the procedure described in de-
tail by Touma and Wisdom (1994).

The Hamiltonian for a system of N planets orbiting a star can be
written as

H ¼ Hkepler þ Hint þ Hjump þ Heuler; ð1Þ

where

Hkepler ¼
XN
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i

2mi
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� �
;

Hint ¼ �
XN
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pi

 !2

;

Heuler ¼
1
2

S � I�1S:

ð2Þ

In Eq. (2), mi is the mass of planet i, and m0 is the mass of the star.
The position, momentum, and spin angular momentum vectors in
an inertial frame centered on the center of mass of the system are
denoted by r, p, and s, respectively. R, P, and S are the equivalent
vectors measured in a frame rotating with the rigid body, measured
from its center of mass. Here, I is the inertia tensor for the rigid
body, and tr(I) indicates the trace of I, where trðIÞ �

P
k¼1;...;3Ikk. Note

that the star has index 0 in the above expressions, while the rigid
body has index 1. Following Touma and Wisdom (1994), we retain
only low-order terms in the expansion for the gravitational interac-
tion between the rigid body and the other bodies in the system,
which are themselves assumed to be point masses.

Following the usual practice for symplectic integrators, the sys-
tem is advanced under each part of H separately, in this case fol-
lowing a leapfrog scheme:

� Advance Hint for s/2.
� Advance Hjump for s/2.
� Advance Hkepler and Heuler for s.
� Advance Hjump for s/2.
� Advance Hint for s/2.

This algorithm is accurate to second order in the timestep s. The
Hamiltonian pieces Hkepler and Heuler affect separate sets of vari-
ables, so they can be advanced in parallel.

We set up the rigid body frame so that its axes are aligned with
the principal axes of the body, in which case I is diagonalized, with
diagonal elements I1, I2 and I3, where I1 = I2 for an axisymmetric
body. The system can be advanced under Heuler using Euler’s equa-
tions, which in this case have the solution

S1ðtÞ ¼ S1ð0Þ cosðatÞ þ S2ð0Þ sinðatÞ;
S2ðtÞ ¼ �S1ð0Þ sinðatÞ þ S2ð0Þ cosðatÞ;
S3ðtÞ ¼ S3ð0Þ;

ð3Þ

where (for axisymmetric bodies such as Earth)

a ¼ 1
I3
� 1

I1

� �
S3ð0Þ: ð4Þ

Each time Heuler is advanced, it is also necessary to update the ma-
trix that transforms between the two reference frames. This is done
using the procedure described by Touma and Wisdom (1994).

The interaction Hamiltonian Hint can be advanced by noting that
it depends only on the position coordinates, so these remain fixed
while the momenta undergo an impulse. Similarly, under Hjump,
the momenta are fixed while the positions change. The Keplerian
orbits of the planets are advanced under Hkepler using Gauss’s f
and g functions (see Danby, 1988), noting that ri0 and pi are
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Fig. 2. Firstrun Earthmoo’s obliquity through time is displayed at four different timescales: millions of years (top), tens of millions of years (second from top), hundreds of
millions of years (third from top), and billions of years (bottom). The integration extends 2 Gyr forward and backward from the present day. Though obliquity varies
significantly more than the real Earth on a timescale of hundreds of thousands of years, the variations remain constrained on tens and hundreds of millions of year timescales.
At billion-year timescales the envelope of variation changes.
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canonically conjugate. We have verified this code by simulating the
evolution of Mars’ obliquity over timescales of millions of years
and comparing our results to published integrations.

The resulting spin-tracking algorithm spends the majority of its
time (>80%) calculating the orbital evolution of the 8-planet sys-
tem. To improve the computational duty cycle, we have imple-
mented a system whereby we track the spin evolution of
multiple ‘‘ghost planets’’ all during a single orbital integration.
We assign the ghost planets appropriately diverse initial obliqui-
ties and axis azimuths, but then track their spin evolution as if they
were all in the same spatial location as the ‘‘real’’ Earthmoo at each
timestep.

As we have implemented them, the rotational bulges of the
planets, excluding the ‘‘real’’ (non-ghost) Earthmoo, do not affect
the orbits of the other real planets. The results for ghost planets
therefore violate Newton’s third law. However, the neglected accel-
erations are small, and hence given the inherently chaotic nature of
the Solar System planets’ orbits (e.g., Laskar, 1989), the qualitative
behavior of the resulting calculation should not differ significantly
from one that would track the evolution of both spin and orbits



Fig. 3. Here we show the obliquity range for integrations of standard Earthmoos, all with close to Earth’s present J2, moment of inertia coefficient, in order to examine the
effects of chaos. The range of Firstrun is shown on the left. All other simulations represented had identical planet positions; these positions differed from Firstrun only by the
chaotic magnification of small initial differences. While planetary positions are identical, each of these Earthmoos has slightly different starting conditions including different
axis azimuths (u), gravitational moments J2 (J), moment of inertia (L), rotation period (P), and obliquity (W), as indicated. The red bars show the obliquity sampled during the
interval (±1 Myr). Black bars show the extension of the range of obliquity during the interval (±500 Myr). Green bars show the obliquity range over the entirety of the relevant
integration. The ‘full’ range is ±2 Gyr for Firstrun and �550 to +936 Myr for all other integrations. Note that for all of the integrations shown apart from Firstrun, the full range
is identical to the ±500 Myr range, and the lower obliquity limit for Firstrun is also identical to that in the ±500 Myr interval. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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independently for each case. We also neglect relativistic effects in
our calculations. The present version of mercury allows us to
follow only one planet’s obliquity – Earthmoo for the present work.

2.2. Assumptions and initial conditions

In order to preserve to first approximation interactions with the
other Solar System planets, we use a total mass equal to the sum of
the masses of the Earth and Moon and give it the initial position
and velocity of the center of mass of the Earth–Moon system. We
call the resulting object an ‘‘Earthmoo’’ after its designation within
the 8-character size limitation for object names within mercury.
We assume that the density of an Earthmoo would be the same
as that of the real Earth, 5.5153 g/cm3. The actual density of a pla-
net formed by combining the Earth and the Moon would not differ
substantially from this value. The addition of low-density lunar
material would lower the body’s density, whereas the resulting
compression of the rest of Earth’s volume given the newly greater
overburden pressure would raise it. We assume a moment of iner-
tia coefficient C (Ahrens, 1995):

C � C

MpR2
eq

¼ C� ¼ 0:3296108; ð5Þ

where C is the planet’s moment of inertia around the principal axis
with the greatest moment of inertia, Mp is the mass of the planet (in
this case that of Earthmoo), and Req is the planet’s equatorial radius.
For the nominal Earthmoo case, we use a dynamical oblateness of
J2 = 0.00108263 and assume a rotation period of 23 h:56 m:04s.

Because the Solar System is chaotic on timescales of several mil-
lion years (Laskar, 1989), the results of these very long-term inte-
grations are valid only in a statistical sense. Any one simulation
may, indeed, be a statistical fluke, sampling a tiny region of param-
eter space. Numerous additional simulations of the system must be
run in order to obtain a statistically robust distribution of results.
To that end, we first explore the obliquity evolution of Earthmoos
that differ only slightly from the standard one. In Section 4 we as-
sign initial axis azimuths u0 that vary from the standard Earthmoo
by 0.1�, 0.01�, 10�3�, 10�4�, 10�5�, 10�6�, 10�7�, 10�8�, and 10�9�.
The latter few differ by such a minute amount that the difference
is actually less than the accuracy of the integration, and thus they
diverge more rapidly than they would with perfect accuracy. We
employ similar variations over many decades in the changed
parameter for initial obliquity W0, planetary J2, moment of inertia,
and rotation period.

Later we look at larger-scale variations of the initial conditions.
We investigate a variety of initial obliquities, azimuthal axis orien-
tations, and rotational periods. In Section 5, we vary the initial axis
azimuth u0 from 0� to 315� in 45� increments. In Section 6, we look
at both prograde (W0 = 0–90� in 15� increments) and retrograde
(W0 = 135�, 156�, and 180�) initial obliquities. For varying initial
rotation rates in Section 7, we perform runs with siderial rotation
periods of 2.8 h, 4 h, 8 h, 12 h, 14.9590278 and 19.6183971 h (for
comparison with Laskar and Robutel (1993)), 16 h, 20 h, 23 h
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56 min 4 s, 24 h, 32 h, 40 h, and 48 h. The case of differing rota-
tional periods presents a challenge in that such planets would have
values of gravitational moment J2 and equatorial radius Req that
differ from those of the real Earth. Some of these we explore both
prograde and retrograde (i.e., with W0 = 156� and u0 = 180�) and
with Darwin–Radau derived J2 values (see Appendix A).
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Fig. 4. Plot of the absolute value of the difference between obliquity for two
Earthmoos in the same orbital integration (using nominal Solar System parameters)
for which the starting axis azimuths u0 are 10�7� (designated / + 10

�7 in Fig. 3) and
10�6� (/ + 10

�6 in Fig. 3). As orbital chaos is suppressed, this plot shows only the
chaos owing to variations in obliquity. The curve shows a characteristic Lyapunov
increase in its upper boundary, but short-term pseudoperiodic variations drive
typical differences to be less.
3. Standard Earthmoo

Fig. 2 shows the results of the first integration that we per-
formed, that of an Earthmoo with the same spin rate, obliquity,
axis azimuth, and J2 as the real Earth. We refer to this simulation
as Firstrun. This was prior to the incorporation of the ghost planets,
and its initial obliquity differs slightly from analogous planets in
other runs (Fig. 3). We integrated the present Solar System forward
and backwards for 2 Gyr and found that, unlike the Martian obliq-
uity, Earthmoo’s obliquity may well not explore the majority of the
range of values allowed to it by frequency map analysis on time-
scales relevant to the evolution of advanced life forms.

The backward integration 2 Gyr into the past is relatively quies-
cent, with obliquity oscillations around an average value of �25�
and envelopes varying in width from 13� (19–32�) to 27� (8–
35�). The near-future shows similar muted variability. Earthmoo’s
average obliquity rises linearly from 25� today to nearly 30� once
the integration has simulated 900 Myr into the future. The width
of the envelope remains similar, though, at around 18� minimum
to maximum. Out as far as 1.4 Gyr into the future, our integration
shows Earthmoo’s obliquity quietly confined to values [40�.
Around 1.44 Gyr, the obliquity regime undergoes a shift. The aver-
age obliquity increases from 33� to 36� over 5 Myr. At the same
time, the obliquity envelope shifts from 25–42� to 29–44�. A sim-
ilar regime shift occurs when the average obliquity spikes up to
48� just prior to 2 Gyr. At that time, the range of the envelope with-
in which the obliquity varies decreases, while the average obliquity
increases from 40� to 48� in two stages across 10 Myr. We see
obliquity variability regime shifts like these two in some of our
other integrations.
4. Chaos

To test the sensitivity of our results to our assigned initial con-
ditions, we integrated a set of ghost Earthmoos simultaneously
with the ‘solid’ Earthmoo Firstrun. Each ghost particle started with
different initial parameters to the Firstrun Earthmoo above, includ-
ing one (SQ023A00) with updated (just slightly different) initial
obliquity than Firstrun. For these ghost particles, we selected dif-
ferent initial Earthmoo obliquity values W0, adding between
10�9� and 10�1�; Earthmoos with different axis angles u0, adding
Du = 10�9, . . . ,100�; Earthmoos with different rotation periods,
adding DP = 10�9, . . . ,10�2 h (with shape changed to correspond
to rotation rate variations as described in Appendix A); Earthmoos
with different values for J2 as would arise from changing Earth-
moo’s rotation period by between 10�2 and 10�9 h (see Appendix
A); and Earthmoos with different moments of inertia, L, appropri-
ate for rotation period, p, differing from the nominal value by an
amount corresponding to the response of a fluid to changes in
the rotation period of Earthmoo by between 10�2 and 10�9 h.
The total obliquity range that each of these Earthmoos explored
over the course of their integration is shown in Fig. 3.

We find that over short timescales, (±1 Myr), these small
changes in initial conditions has very little effect on the total obliq-
uity range explored. On ±500 Myr and longer timescales the range
explored starts to diverge, even for nearly equivalent initial condi-
tions. All of the obliquities, however, vary between �13� and �37�,
and none leaves that range over the course of ±500 Myr.
The differences between the solutions discussed above owe to
chaos. We test for the influence of chaos in two different ways.
We looked for the effects of: (1) pure obliquity chaos, and (2) orbi-
tal obliquity chaos.

4.1. Obliquity chaos

In Fig. 4, we show the difference between the obliquity of two
different ghost planets with slightly different initial obliquities
(differing by 9 � 10�7�). These two ghost planets were in the same
orbital integration. Hence the evolution of the obliquity difference
between these two ghost planets over time does not result from
differences in the positions of the planets.

An exponential increase in the obliquity difference in the two
integrations is established at an early stage, and continues until
the divergence saturates. Because both obliquities show pseudope-
riodic short-term variability, though there are times when the
obliquities grow closer by chance. After 240 Myr or so each planet
is undergoing pseudoperiodic variations within the same range,
and the maximum extent of that range has been reached. After that
time, the obliquity difference between the two integrations is sto-
chastically distributed below the maximum range difference. Using
the upper envelope of the difference curve, we calculate a Lyapu-
nov time for obliquity chaos of an Earthmoo of 14 Myr – about
twice as large as the typical value for the orbits of the terrestrial
planets. After roughly 240 Myr, any two ghost planets, even with
trivially different initial conditions and everything else equal, can
be in fundamentally different obliquity states from one another.

4.2. Orbital chaos

For the orbital chaos test, we ran orbital integrations for identi-
cal Earthmoos in Solar Systems with Mars shifted along its orbit by
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1 m in the prograde direction (‘‘ahead’’) and by 1 m in the retro-
grade direction (‘‘behind’’). Each of these runs contained a ghost
particle with initial rotation axis identical to the standard Earth-
moo. Fig. 5 shows the difference in obliquity between two runs
with differing initial Mars positions as a function of time, and
Fig. 3 and the range bars near 0� in Fig. 6 show the net short-term
(defined as ±1 Myr), medium-term (±500 Myr) and long-term (full
integration) obliquity ranges for Earthlike initial axis orientation in
the orbital chaos runs. The Mars-ahead run shows typical orbital
variations out to 800 Myr into the future, but then Mercury’s
eccentricity grows and it jumps up to 0.7 at +900 Myr. This type
of Solar System instability has been seen before, and is described
elsewhere (Laskar and Gastineau, 2009, and references therein).
It yields a Solar System different from the present state (which
was used for the frequency map analysis of Laskar et al.
(1993b)), so we truncate this run at 800 Myr for the obliquity stud-
ies presented herein.

From Fig. 5, we calculate that the Lyapunov time for orbital
chaos is 7 Myr. Hence when orbital chaos is present, the chaotic
evolution of Earthmoo obliquities is driven by chaotic orbits more
than by inherent chaos in the obliquity itself.

As expected based on the Lyapunov time, the short-term obliq-
uity range is identical for the same initial conditions in the nomi-
nal, ahead, and behind systems. Over the full time of the
integration, however, chaos drives the ranges to differ, sometimes
by a few degrees, but occasionally by more. The substantial regime
shifts shown in Fig. 2 do not occur in the majority of other
integrations.
5. Axis orientation

In addition to the chaotic variability of past and future obliquity,
the obliquity evolution of Earthmoos depends strongly on our
broadly-chosen initial conditions. In Sections 3 and 4, we chose
an initial obliquity W 	 23.44�, the same as Earth’s real obliquity
today. We might alternatively have chosen a different obliquity
between 22.1� and 24.5�, the range over which Earth’s obliquity
varies due to the Milankovitch cycles.

We might also have elected to have the same value for Earth’s
obliquity, but to have the Earth’s axis pointed in a different direc-
tion. To put this another way, we could use the same obliquity for
the Earth, but change the date of the northern spring equinox. We
call this angle the axis azimuth, u. We define u = 0� to be Earth’s
present-day axis azimuth, and positive values of u such that they
correspond to later times for the northern spring equinox. We inte-
grated seven such ghost planets, spaced by 45� in u; the results are
shown in Fig. 6. As evident from the comparison of displayed
ranges, the obliquities of these planets differ from that of the nom-
inal Earthmoos by more than the effects of chaos, especially on
sub-Gyr timescales.

Fig. 7 shows ±2 Gyr obliquity evolution for Earthmoos with ini-
tial axis angles u0 = 0�, 90�, 180�, and 270�. They correspond to
having the northern spring equinox at the present epoch on �
March 21, June 21, September 21, and December 21 respectively.
While all of these integrations have identical obliquities,
W = 23.44�, the character of their evolutions differ significantly.
The integration with u0 = 180�, third panel down in Fig. 7, has
strong qualitative similarity to the u0 = 0� case reproduced at top
for comparison (these data are the same as those in Fig. 2). It varies
rapidly between an obliquity of W � 10� and W � 40�, but stays
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Fig. 7. Long-term obliquity evolution for Earthmoos with the same initial obliquity as Earth, but differing initial azimuthal axis orientations, u0, that are 0� (top), 90� (second
from top), 180� (third from top), and 270� (bottom) ahead of the present-day axis orientation.
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constrained between those obliquity values over the entire 4 Gyr
integration. Second from the top in Fig. 7, the u0 = 90� integration
constrains obliquity to between W � 20� and W � 40� until 1.3 Gyr
hence. At 1.3 Gyr the obliquity evolution changes regime, and
thereafter is bracketed by W � 30� and W � 50�. Fig. 7’s bottom fig-
ure, for u0 = 270�, shows the opposite change. This integration has
obliquity evolution between W � 10� and W � 35� in the distant
past, but then has obliquities dropping to 0� < W < 30� from
200 Myr ago until the end of the integration at 2 Gyr in the future.

The drops to low obliquity seen in the latter case have the most
serious implications for climatic stability. Fig. 1 shows the year-
averaged insolation as a function of latitude for planets with vary-
ing obliquities. Although high-obliquity planets have extreme sea-
sons, the total solar heating is such that all latitudes receive a
substantial flux over the course of the year. The greatest insolation
disparity occurs with W = 0�. In that case, formally the poles re-
ceive no solar flux at all (we have neglected atmospheric scatter-
ing). Barring a massive atmospheric or oceanic heat transport,
there exists the likelihood that the poles of an Earth-like planet
would then freeze over. If the resulting glaciation is severe enough
it could enter into a runaway snowball state (Hoffman et al., 1998)
that would be detrimental to any multicellular life on the planet.

Each of these integrations with varying initial axis azimuth u
are roughly equally valid. Given the present rapid rotation axis
precession resulting from lunar torques, the real Earth’s u pro-
ceeds from 0� around to 360� every 26 kyr. Since the Earth’s rota-
tion axis precesses in the opposite direction from Earth’s orbital
motion, the u = 90� case roughly corresponds to an Earthmoo
integration with initial rotation axis pointed as it was 6500 years
ago. The u = 270� case represents the obliquity evolution that
would occur if we started the rotation axis in the orientation that
it will be 6500 years from now. These differences result from
variations in Earth’s orbital plane. Since obliquity is defined as
the angle between a planet’s rotational axis and the normal to
its orbit, both changes in the absolute position of the orbital axis
and changes in the orbital pole both affect obliquity. Earth’s orbi-
tal plane precesses around the Solar System’s invariable plane
(perpendicular to the net Solar System angular momentum vec-
tor) with a period of �100 kyr. The rotational axis of an Earthmoo
has a precession period comparable to that of Earth’s orbit plane.
This near-resonance drives the large short-term variability of
Earthmoo obliquity.
6. Initial obliquity

Terrestrial planet formation is chaotic. Without a giant Moon-
forming impact, or with a different one, the initial obliquity of an
Earthmoo would typically differ from that of the present-day Earth.
Neron de Surgy and Laskar (1997) show that billions of years ago
the real Earth’s obliquity was substantially different than it is in
the present epoch. Using the Earth’s present obliquity of 23.44�
as the starting condition for calculating the obliquity evolution of
an Earthmoo does not tell the whole story. We thus ran numerous
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ghost particles with initial obliquities substantially different from
the Earth’s present obliquities in the integrations with Mars ahead
of or behind its nominal position by 1 m. The results of these sim-
ulations are presented in Fig. 8.
6.1. Prograde

We plot the obliquity evolution for hypothetical Earthmoos
with different prograde obliquities in Fig. 9. The integration that
starts with obliquity W0 = 0� undergoes the same �100,000 year
short-term variations as the W0 = 23.44� Earthmoos. It also does
not show large long-term excursions, however, and remains
bounded between W = 0� and W = 30� throughout the ±2 Gyr inte-
gration. Its overall behavior resembles that of the future of the
W0 = 23.44� Earthmoo with initial axis azimuth u0 = 270� that we
discuss in Section 5.

The Earthmoo with W0 = 45� shows the smallest variability of
any of the prograde moonless Earths that we study. Its short-term
obliquity varies in just a 10� range. On longer (10 Myr) timescales,
that range shifts from as low as 30–40� up to 40–50�.

At higher obliquity, the W0 = 75� Earthmoo shows a qualita-
tively different behavior. Its short-term obliquity variations some-
times occur over a 10� range, and sometimes over a 25� range from
55� to 80�. By 2 Gyr in the future this Earthmoo has undergone a
regime shift such that its obliquity is confined between 45� and
55�; its envelope overlaps that of the W0 = 45� Earthmoo on the
plot.

Of these three prograde integrations, with W0 = 0�, 45�, and 75�,
the low obliquity may be the most dangerous for climatic stability.
As shown in Fig. 1, the yearly averaged solar flux between an obliq-
uity of 0� and 20� differs more than that between 40� and 60�. In
the end, however, a more sophisticated treatment would be neces-
sary in order to assess the habitability of worlds with the type of
obliquity variations that we find.
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6.2. Retrograde

Planets that rotate retrograde (i.e., W > 90�) experience rota-
tional axis precession in the opposite sense as those that rotate
prograde. Hence while prograde rotaters can have their rotational
precession enter into resonance with orbital precession, under
most circumstances retrograde rotaters cannot. Thus retrograde-
rotating planets would be expected to have more stable obliquities
than prograde rotaters.

Our analysis agrees with past studies (e.g., Laskar et al., 1993b)
that they are. Fig. 10 shows the obliquity evolution for retrograde
planets with u0 = 135�, u0 = 155�, and u0 = 180�. The short-period
obliquity variations for the u0 = 135� and u0 = 155� retrograde
Earthmoos are constrained over a range of just 2� – less than the
obliquity variability of the real Earth. Therefore the climatic varia-
tions on these planets should also be similar to that of the real
Earth. If the initial axis orientations of terrestrial planets are
isotropic (Miguel and Brunini, 2010), then half should be retro-
grade. Severe obliquity-driven climatic shifts will not affect those
half, and not inhibit their habitability.
7. Rotation rate

To this point we have considered Earthmoos with the same
rotation rate as the present Earth. While this choice is a reasonable
starting point, the initial rotation period of a moonless Earth might
be anything from the theoretical minimum of �2.8 h to weeks or
longer. We therefore ran a set of integrations for hypothetical
Earthmoos with rotation periods between 2.8 h and 48 h at varying
initial obliquities and axis angles in order to explore their obliquity
evolution. The long-term obliquity variations for these faster- and
slower-spinning Earthmoos are shown in Figs. 11–13.

Earthmoos with rotation rates leading to axis precession rates
nearly commensurate with orbital precession are expected to have
the most variable obliquities. The obliquity for Earthmoos with
rotation rates far from this commensurability can be quite stable.
Most of the Earthmoos with very rapid rotations, those with periods
of 2.8 h and 4 h, show total obliquity variability of �1� – less than
that of the real (mooned) Earth. The 4-h period Earthmoo with ini-
tial obliquity of 90� has a wider obliquity variation range, between
70� and 93�, but that range is consistent over Gyr timescales.

With increasing rotation periods around 12 h the obliquity
range increases, but the variations remain somewhat stable over
long timescales. The obliquity evolution for these rotation rates
is chaotic for some initial obliquities (23.44� and 45� from Fig. 8),
and not for the rest.

At longer rotation periods, the obliquity of Earthmoos with ini-
tial obliquity of 90� remains near this value. The obliquities of
Earthmoos with initial obliquity between 0� and 45� all vary
substantially for the rotations periods that we study longer than
12 h. However, typical ranges are �10–20� in width on megayear
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timescales and�20–30� wide on gigayear timescales, implying that
climatic variations may be less severe than previously thought.
8. Conclusion

A frequency-map analysis by Laskar and Robutel (1993)
concluded that a moonless Earth’s obliquity could vary anywhere
between 0� and 85�. To investigate whether moonless Earths really
do access those different obliquities, we developed a module for the
orbital integrator mercury to calculate and record the orientation
of a planet’s rotational axis over time. As mercury’s calculation of
planetary orbits dominates the computation time, we implemented
a scheme whereby many ‘‘ghost planets’’ with positions fixed to
that of the moonless Earth could all have their obliquity tracked
simultaneously. This allows us to study different initial conditions
for planetary obliquity and axis azimuth more efficiently.

Over the course of a 4 Gyr integration from 2 Gyr in the past to
2 Gyr in the future, we found that the obliquity of a moonless Earth
is likely to remain within limits much more constricted than the
range allowed by frequency-map analysis. Using Earth’s present
day obliquity and axis orientation as the initial conditions, over
4 Gyr the obliquity varies between �10� and �50�. This same inte-
gration shows long quiescent periods over 500 Myr in duration
where the obliquity varies between 17� and 32�. These long quies-
cent periods are separated by intervals a few Myr long when the
obliquity variation regime shifts to a different range.

None of our integrations show obliquity changes over the entire
frequency-map allowed range. The behavior of obliquity depends
strongly on the initial conditions. Small variations in those initial
conditions result in chaotic changes in obliquity with a Lyapunov
time of 7 Myr if initial orbits differ slightly, and 14 Myr for ghost
particles with slightly different obliquities within the same orbital
integration. Integrations of moonless Earths with initial obliquity
the same as the real Earth’s, but with different rotational axis ori-
entations, show similarly restricted obliquity variations that occur
within different ranges.

Thus we assess that moonless Earths are probably able to access
a good fraction of the range of obliquities allowed by frequency
map analysis, but the typical timescale to explore this region
may be longer than the typical lifetime of a solar-type star, or at
least longer than the time that lapsed on Earth since the Cambrian
diversification.

Hypothetical moonless Earths with differing prograde obliqui-
ties show qualitatively similar behavior. In those cases, obliquities
vary over a �25� range, within which lies the initial obliquity. Ret-
rograde-rotating planets, whose rotational axis then precesses in
the opposite sense as the orbital plane, show short-term obliquity
variations of order just 2�, with infrequent regime-shifts of 4–5�. If
initial planetary rotational axis orientations are isotropic, then half
of all moonless extrasolar planets would be retrograde rotators,
and these planets should experience obliquity stability similar to
that of our own Earth, as stabilized by the presence of the Moon.
Thus the presence of a large moon should not be considered a
requirement for an earthlike planet to possess a stable enough
obliquity for advanced life to develop and flourish.
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Appendix A. Rotation rate and dynamical oblateness parameter
determination

Simulations of the obliquity evolution of Earthmoos with a wide
range of rotation rates are discussed in Section 7. Here we show
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how we determined the initial parameters for Earthmoos with
rotation rates differing from that of the real Earth. To analytically
estimate what the J2 and Req should be for each of our Earthmoos,
we start with the Darwin–Radau relation, which relates J2 and
oblateness (f � (Req � Rp)/Req with Rp as the planet’s polar radius
– this is sometimes referred to as the dynamical ellipticity) as a
function of C (Murray and Dermott, 2000):

J2

f
¼ � 3

10
þ 5

2
C� 15

8
C2: ðA1Þ

Using the Darwin–Radau relation (Eq. (A1)) along with the relation
that

f ¼ 3
2

J2 þ
1
2

q; ðA2Þ

where

q �
X2R3

eq

GMp
; ðA3Þ

with G as the gravitational constant (Murray and Dermott, 2000),
allows us to calculate that
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with D defined to be
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With the definition of f, Eq. (A2) and conservation of the planet’s
volume such that
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eqRp

3
¼ Mp
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(assuming that q remains constant as a function of X), it can be
shown that
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Solving Eqs. (A4) and (A7) simultaneously by eliminating J2 results
in a multivalued quadratic expression for Req:
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The double-valuedness results from there being two compatible
angular momentum states for each given rotation rate. In the trivial
case where X = 0 the angular momentum states are that with zero
angular momentum and zero oblateness, and that of infinite angu-
lar momentum as a flat pancake with Req =1. As the giant pancake
is unphysical, we keep only the negative root of the radical in Eq.
(A8). We assign for our various Earthmoos a radius such that

R3
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2�
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@
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and a J2 from using a defined rotation rate with Eq. (A9) to deter-
mine q, which we plug back into Eq. (A4). When applied to the real
Earth, the resulting system approximates Earth’s equatorial radius
to within 250 m and its J2 to within 2%. To calculate the resulting
oblateness f, plug the resulting J2 back into Eq. (A2).
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