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Abstract: We consider tidal decay lifetimes for moons orbiting habitable extrasolar planets using the
constant Q approach for tidal evolution theory. Large moons stabilize planetary obliquity in some
cases, and it has been suggested that large moons are necessary for the evolution of complex life.
We find that the Moon in the Sun–Earth system must have had an initial orbital period of not slower
than 20 h rev−1 for the moon’s lifetime to exceed a 5Gyr lifetime. We assume that 5 Gyr is long enough
for life on planets to evolve complex life. We show that moons of habitable planets cannot survive for
more than 5Gyr if the stellarmass is less than 0.55 and 0.42M⊙ forQp=10 and 100, respectively, whereQp is
the planetary tidal dissipation quality factor. Kepler-62e and f are of particular interest because they
are two actually known rocky planets in the habitable zone. Kepler-62e would need to be made of iron
and have Qp=100 for its hypothetical moon to live for longer than 5 Gyr. A hypothetical moon of
Kepler-62f, by contrast, may have a lifetime greater than 5 Gyr under several scenarios, and particularly
for Qp=100.
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Introduction

Detecting terrestrial planets in habitable zones is exciting
because life may exist on such planets. To support life, a planet
must orbit in the habitable zone of its parent star and have a
moderate climate. It may take a long time for life to reach
complex, multicellular forms of life. For example, it took about
4 billion years for life on Earth to evolve from single-celled
organisms to multicellular creatures such as plants, animals
and fungi. A moderate long-term climate is crucial for life to
reach multicellularity. In this paper, we assume that 5 billion
years is long enough for life on other planets to evolve from the
simple to the complex.
Earth’s obliquity, or axis tilt, is stabilized by the Moon

(Laskar et al. 1993). Mars, on the other hand, has relatively
small satellites and its obliquity changes chaotically, fluc-
tuating on a 100000-year timescale (Laskar & Robutel
1993). Hence, even if an Earth-sized exoplanet has a
moon, the planetary obliquity may fluctuate wildly if that
moon is too small. As planetary climate depends heavily
on obliquity (Williams & Kasting 1997; Dobrovolskis 2013),
such a planet may not maintain a favourable climate for
evolutionarily relevant timescales. Therefore, orbital longevity
of a moon may be an important factor allowing a planet to
have a moderate long-term climate. The prospects for
habitable planets may hinge on moons (Ward & Brownlee
2000); but see also Lissauer et al. (2012).
The tidal torque controls the long-term orbital stability of

extrasolar moons. Counselman (1973) pointed out that in a

planet–moon system with lunar1 tides, there are three possible
evolutionary states:
1. The semi-major axis of the moon’s orbit tidally evolves

inward until the moon hits the planet. Mars’ moon Phobos
is one such example.

2. The semi-major axis of the moon’s orbit tidally evolves
outward until the moon escapes from the planet. While no
solar system examples exist for this case, this result could be
achieved for the Earth–Moon system if Earth’s present
rotation rate was doubled.

3. Lunar orbital and planetary spin angular velocities enter
mutual resonance and are kept commensurate by tidal
forces. This is the case for Charon, the dwarf planet Pluto’s
moon. Unlike the first two states, which are evolutionary,
this state is static.
Ward & Reid (1973) considered a star–planet–moon system

with stellar tides and examined the impact of solar tides on
planetary rotation in a limited star–planet–moon without
considering the effects of lunar tides or maximum distance
from the planet. Barnes & O’Brien (2002) considered a similar
tidal evolution scenario, incorporating the maximum distance
of the moon but not the lunar tides’ effect on planetary
rotation. According to their work, the moon may either hit the
planet or escape from it. Sasaki et al. (2012) studied the general
tidal evolution of star–planet–moon systems, extending Barnes

1 In this paper, we use ‘lunar’ as the adjective of any moons, not just the
Moon.
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& O’Brien (2002) to include the lunar effect on planetary
rotation. Sasaki et al. (2012) also found the same two possible
final states. Their result is applicable to a star–planet–moon
system whose rocky planet orbits at a habitable distance. We
are using lunar and stellar tides to refer to the tides raised on a
planet by a moon and star, respectively.
In this paper, we investigate the conditions of star–planet–

moon systems required for moons to have lifetimes greater
than 5 billion years. We are especially interested in rocky
planets within habitable distances. In the subsection ‘Para-
meters’, we provide a brief introduction of some important
parameters such as the planetary tidal dissipation values and
Love numbers. In the next subsection, we introduce tidal
evolution trajectories. We consider the Earth in the section
‘Sun/Earth system Qp=12’. We then calculate the lifetime of
moons with hypothetical moon/planet mass ratios and initial
planetary rotational periods. We consider rocky planets with
the same composition as the Earth in the section ‘Generalized
habitable planets’. As not all extrasolar rocky planets are
Earth-like, we examine four typical planet compositions in the
subsection ‘Four typical compositions of planets with
Qp=100’: 50% ice–50% rock, 100% rock, Earth-like (67%
rock, 33% iron) and 100% iron. In the next subsection, we
discuss the ‘critical line’ of moon-stability. In the section
‘Kepler-62’, we study the lifetimes of the hypothetical moons
of two known rocky planets in their stars’ habitable zones,
Kepler-62e and f. We discuss these results in the penultimate
section and summarize our conclusion in the final section.

Method

We consider a star–planet–moon system and focus on the
tidal effects on the planets due to the star and moon. We use
standard tidal evolution theory with the constant Q approach
(Goldreich & Soter 1966). In our model, tides on a planet are
induced by both the star and moon. Sasaki et al. (2012)
formulated tidal decay lifetimes for hypothetical moons orbit-
ing extrasolar planets with both lunar and stellar tides. In this
research, we apply the Sasaki et al. (2012) method to *1.0M⊙
star systems with 0.1–10M⊕ terrestrial planets at habitable
distances. As we use the Sasaki et al. (2012) method and apply
their results, it is important to summarize the major assump-
tions of the model and the assumptions unique to this work:
1. The planet has 0° obliquity, the moon orbits in the planet’s

equatorial plane, and the planet and moon motions are
prograde.

2. We neglect the orbital angular momentum of the
moon about the star and the moon’s rotational angular
momentum.

3. The moon’s orbit about the planet and the planet’s orbit
about the star are circular.

4. The star’s spin angular momentum is neither considered,
nor is the planet’s tides on the star or the star’s tides on the
moon.

5. The specific dissipation function of the planet, Qp, is
independent of the tidal forcing frequency and does not
change as a function of time.

6. The systems start in a planet–moon synchronized state, i.e.
the planetary angular spin velocity is equal to the moon’s
orbital angular velocity. This initial state is unstable, and
the moon’s orbit evolves rapidly outward thereafter.

Note that Sasaki et al. (2012) does not use assumption 6.
These assumptions simplify the calculations allowing us to
apply them generally. They also reflect our goal of constraining
the existence of moons because non-zero obliquity and
eccentricities would only shorten the moons’ lifetimes.
Regarding assumption 6, if a planet–moon system does not

start with the synchronized state, we can always find such a
state by integrating the equations of the planetary angular spin
velocity and the moon’s orbital angular velocity backwards in
time. A planet–moon system evolves quickly at first if it starts
with the synchronized state. Hence, the error induced by
assuming the synchronized state as the initial condition is
small. With these assumptions, the upper bound for moons’
lifetimes can be estimated.

Parameters

The definition of a habitable distance is controversial in
planetary science. Even for the Sun, there are several esti-
mations. Dole (1964) predicted that the habitable distance
from the Sun is between 0.725 and 1.24 AU. Hart (1979)
concluded that the habitable distance is from 0.95 to 1.01 AU.
More recently, Kopparapu et al. (2013) estimated the habitable
distance to be from 0.99 to 1.7 AU. Calculating the habitable
distance is a difficult process even if restricted to the classic
circumstellar habitable zone, which is based on sustainability
of liquid water on the surface. The difference between the Sun
and a lower mass star is not only the total radiant energy but
also the peak wavelength which is important because it is
closely related to planetary albedo. Ice on a planet’s surface is
very reflective in the visible light from Sun-type stars, but its
albedo is low in the infrared region, the peak emission from
low-mass stars (Joshi & Haberle 2012; Shields et al. 2013). In
this study, we take the habitable distance to be the distance at
which the radiant energy of the centre star that the planet
receives is the same as that of the Earth. At least at this
distance, we know of at least one case in which a planet retains
liquid water on its surface.
We use the following equation to find the habitable distance:

d(AU) =
����
L∗
L⊙

√
, (1)

where L* is the stellar luminosity. In lieu of a complex suite of
stellar models, we adopt the rough approximation (Hansen &
Kawaler 1994):

L∗
L⊙

= M∗
M⊙

( )3.5

, (2)

to estimate the luminosity as a function of stellar mass.
Figure 1 shows our assumed habitable distance as a function of
stellar mass.
Planetary radii, the planetary tidal dissipation values, and

the Love numbers are important input values for the tidal
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theory. Planetary radii depend on the planet’s composition
(Fortney et al. 2007). The three main ingredients of rocky
planets are ice, rock and iron. We consider four planetary
compositions: 50% ice–50% rock, 100% rock, Earth-like (67%
rock, 33% iron) and 100% iron. Of these, 100%-iron planets
may not commonly exist in the Universe. However, we con-
sider these types of planets as end-member cases because, for a
given planetary mass, a 100%-iron planet would have the
smallest radius.
The planetary tidal dissipation value Qp was discussed by

Goldreich & Soter (1966). Its definition comes from the
analogywith forced, damped oscillators and evaluates the ratio
between the maximum energy stored in during the cycle and
the energy dissipated over one cycle by friction. A small value
ofQp means large energy dissipation and vice versa. Estimating
Qp is not an easy task because it depends on the specifics of
planetary structure such as composition, equation of state,
material properties, etc. The exact nature of a planet’s tidal
response is still under investigation (Hubbard 1974; Goldreich
& Nicholson 1977; Ogilvie & Lin 2004; Ogilvie & Lin 2007).
For rocky planets, the value of Qp ranges between 10 and 500
(Goldreich & Soter 1966).
The Love number k2 characterizes the overall elastic

response of the planet to the tides and depends on the mass
and composition of the planet. Earth’s k2 value is 0.299, for
example. In the Appendix, we show the k2 values in this study.
As mentioned in the Introduction, a too small moon cannot
stabilize planetary obliquity. To stabilize planetary obliquity,
themoonmust be large enough to exert a torque on the planet’s
rotational bulge comparable to that of the parent star. We
estimate the minimum lunar mass capable of stabilizing
planetary obliquity to be

Mm

Mp
�.
β3

3
, (3)

where β is the distance of a moon in terms of the Hill radius,
and Mm and Mp are the masses of moon and planet,
respectively. This equation indicates that if we know the
distance of a moon in terms of the Hill radius, we can estimate

the minimum lunar mass required to stabilize a planet’s
obliquity. The derivation of equation (3) is in the Appendix.

Tidal evolution trajectories

To calculate the lifetime of the moon, we first determine the
type of the system. There are four types of star–planet–moon
systems based on the trajectories of the planets and moons:
three ‘colliding’ (types I, II and III) and one ‘escaping’ (type
IV) (Sasaki et al. 2012). The colliding type is defined by the
semimajor axis of moon’s orbit being continuously less than
0.36 the Hill radius all the time, with the moon hitting the
planet in the end. The escaping type requires that the semi-
major axis of the moon’s orbit exceed this ratio at some time. A
moon can maintain a stable circular orbit inside of 0.36 Hill
radii because the perturbation from the Sun is small within this
region. Outside of 0.36 Hill radii, the planet has difficulty
holding on to the moon as its orbit evolves towards escape.
While Barnes & O’Brien (2002) suggest 0.36 for this critical
ratio, Domingos et al. (2006) suggests 0.49. We use 0.36 for the
critical ratio because it is the most conservative estimate for the
moon to remain bound.
Here we summarized the types of tidal evolution paths

defined by Sasaki et al. (2012). If the tidal torque on the planet
from the moon is always greater than that from the star, then
the star–planet–moon system will be type I. As the tidal torque
on the planet from the moon is greater than that from the star,
the planet and moon evolve towards a synchronized state and
remain synchronized once they reach this state. Systems with
higher mass moons tend to be of type I. Our Sun–Earth–Moon
system is type I.
On the other hand, if the tidal torque on the planet from the

moon is always smaller than that of the star, then the system
will be type III. As the tidal torque on the planet from themoon
is smaller than that from the star, the planet’s rotation will
become synchronous with its year instead of the moon’s orbital
period. When the moon’s mass is lower, the system tends to be
of type III.
Type II is between types I and III. First, the planet and star

reach a synchronized state, and then the planet andmoon reach
the synchronized state after the moon migrates inward. If the
moon migrates outward to have a semimajor axis greater than
0.36 Hill radii, then the system will be type IV. In type IV
system, the planet loses the moon interstellar space.

Sun/Earth system Qp=12

In this section, we apply the method that Sasaki et al. (2012)
introduced to the Sun/Earth system. Figure 2 shows the moon
orbital evolution type of Sun–Earth system as a function of
moon mass and initial planetary rotation. The white vertical
line represents the mass ratio of real Moon and Earth.
The giant impact hypothesis is currently the favoured

hypothesis for the origin of the Moon (Canup & Asphaug
2001). Although this hypothesis explains the current angular
momentum of the Earth–Moon system, the Moon’s small iron
core and the compositional similarity between the Moon and
Earth (Stevenson 1987), it does not explain how the oxygen
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Fig. 1. The graph shows the habitable distance calculated from
equations (1) and (2). The habitable distance moves outward almost
for higher mass stars.
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isotropic composition of the Moon could be indistinguishable
from that of the Earth (Wiechert et al. 2001). Pahlevan &
Stevenson (2007), Canup (2012) and Ćuk & Stewart (2012)
suggested different models to solve this problem. It is beyond
the scope of this paper to specifically model the formation of
moons. However, the giant impact scenario might be the most
common way for a rocky planet to have a moon. By this
hypothesis, Earth’s initial angular spin velocity would have
been from 5 to 8 h rev−1 and the initial Earth–Moon distance is
*20000 km corresponding to the orbital angular velocity of
7.8 h rev−1. The Earth–Moon system may have thus started
near a planet–moon synchronized state, but an unstable one
from which it evolved rapidly.
Our calculations suggest that the Sun–Earth–Moon system

would be type I if both Earth’s initial spin velocity andMoon’s
initial orbital angular velocity are between 5 and 8 h rev−1.
This means that the torque on the Earth from the Moon is
greater than that from the Sun. Earth’s spin velocity slows
down and the Moon spirals outward (we are in this stage now)
until the Moon reaches a synchronous distance. Once the
Moon reaches Earth’s synchronous radius, the Moon’s orbital
angular velocity will be equal to Earth’s spin angular velocity.
However, because solar tides continue to rob angular mo-
mentum from the system, Earth’s spin angular velocity and
Moon’s orbital angular velocity will both increase, meaning
that the moon will spiral inward, until theMoon hits the Earth.
Whenmoons are of lowmass and planets have short rotational
periods, systems tend to be type IV (bottom left corner, red). In
these conditions, it is hard for the planet to keep a light and
fast-moving moon, which would spiral away until it was lost to
interplanetary space.
If the Moon were less massive, then our Sun–Earth–Moon

system would be type II. The fate of the hypothetical Sun–
Earth–Moon system would be different. Earth’s spin velocity

slows down and the Moon spirals outward until the Moon
reaches synchronous distance, like type I. As the Moon is less
massive, the tidal torque due to the Moon is not large enough
to keep the planet–moon synchronous state. Earth’s spin
velocity keeps slowing down therefore until it equals Earth’s
orbital angular velocity. In other words, Earth’s day becomes
longer and longer until 1 day equals 1 Earth’s year. The system
at that point is in the planet–star synchronous state. Mean-
while, the Moon starts spiralling inward. As the Moon is
spiralling inward, the tidal torque due to the Moon becomes
larger and larger. When theMoon is sufficiently close, the tidal
torque due to the Moon overcomes that due to the Sun. At this
point, the planet–star synchronous state ends. Earth’s spin
velocity starts increasing, which means that Earth’s day be-
comes shorter and shorter. Eventually, the Earth and Moon
reach the planet–moon synchronous state, which means that
the Moon stays in one position in the sky as viewed from the
Earth. When the system reaches the planet–moon synchronous
state, Earth’s spin velocity increases from solar tides and the
Moon spirals inward until the Moon hits the Earth, similar to
the end process for the type I state.
Figure 3 shows the lifetime for hypothetical moons of the

Earth with differing initial planetary rotation and moon mass:
less than 1Gyr (red), 1–5Gyr (yellow), 5–10 Gyr (green) and
more than 10Gyr (blue). Each graph of the lifetime of the
moon given in Fig. 2 has its own graph of the type of the system
as in Fig. 2. However, we only show the Sun–Earth case
(Fig. 2) here because the basic features are the same in all cases.
For a fixed small mass ratio, the longer the initial rotational

period is the shorter the lifetime of the moon. The lifetime of
the moon depends on the total initial angular momentum of
the planet–moon system. When the system has smaller total
angular momentum, the lifetime of the moon is shorter. For a
fixed small mass ratio, the system has smaller total angular

Fig. 2. The graph shows the moon orbital evolution type of Sun–Earth system according to the types defined by Sasaki et al. (2012). Type IV is an
unstable orbit where Earth loses the moon. Types I, II and III are stable orbits, which mean that Earth keeps the moon. The white vertical line
represents the mass ratio of the real Moon and Earth. For the cases, our Sun–Earth system is Type I. Note that the orbital evolution types shown
here are not a function of Qp.
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momentum when the initial rotational period is longer. Con-
sider the Earth–Moon case as an example. The white vertical
line represents the mass ratio of Moon and Earth. Our result
indicates that for initial rotational periods up to 14 h rev−1, the
lifetime of themoon is more than 10Gyr, which agrees with the
predictions of the giant impact hypothesis (5–8 h rev−1). On
the other hand, the lifetime of the moon is shorter than the age
of the Earth if the initial rotational period is 20 h rev−1 or
slower. This result implies that if the initial rotational period
had been 20 h rev−1 or slower, the moon would have already
hit the Earth, a thankfully unachieved result.
For a fixed fast initial rotational period, say 8 h rev−1,

the relationship between the mass ratio and the lifetime is
monotonic. The bigger the mass of the moon, the shorter the
lifetime. At 8 h rev−1, the lifetime of the moon is more than
10Gyr when the moon–planet mass ratio is up to 0.04. The
lifetimes are 5 and 1Gyr when the mass ratio is 0.055 and 0.08,
respectively. The lifetime is less than 1Gyr when the mass ratio
is more than 0.08.
For a slower rotational period, say 20 h rev−1, the relation-

ship between the mass ratio and the lifetime is not monotonic.
There are two ways for the moon to have more than 1Gyr
lifetime. In this specific case, when the moon–planet mass ratio
is either up to 0.02 or more than 0.04, the moon can survive
longer than 1Gyr.

Generalized habitable planets

We now extend the investigation of the previous section to the
lifetimes of moons around hypothetical habitable extrasolar
planets by considering *1.0M⊙ star and 0.1–10 M⊕ planet
systems with Qp=10 and 100. We consider planets made of
50% ice–50% rock, 100% rock, Earth-like (67% rock, 33% iron)
and 100% iron. We show the results for those planets orbiting

0.4–1.0M⊙ stars because stars less than 0.4M⊙ all have the
same results as stars with 0.4M⊙.

Earth-like planets with high dissipation

Earth-like planets at habitable distances might have environ-
ments similar to that of the Earth. By the definition of the
planetary tidal dissipation value, Qp=10 indicates that there
exists a mechanism that dissipates large amounts of tidal
energy each cycle. On the Earth it is well known that tidal
dissipation occurs mainly in the oceans (Munk & MacDonald
1960; Egbert & Ray 2000; Ray et al. 2001). Tidal friction takes
place mainly in the hydrosphere, particularly in shallow seas,
those that are less than *100m deep on the continental shelf
(Lambeck 1980). Tidal energy dissipation was significantly
lower over the past 3 million years on average and one possible
reason is a reduction in global tidal friction during periods of
glacio-eustatic sea level lowering (Lourens et al. 2001). For the
Earth, tidal sloshing in shallow seas may be the mechanism
that dissipates large amounts of energy. As it is hard to esti-
mateQp from the planetary structure directly,Qp=10 does not
necessarily mean that a planet has shallow seas. However,
given that we do not presently know of any other mechanism
that can dissipate large tidal energy besides shallow seas, we
assume that Qp=10 indicates that a planet may have shallow
seas. Figure 4 shows the lifetimes of the moons whose planets
have the same compositions of the Earth and orbit at the
habitable distance from 0.4 to 1.0M⊙ stars. For 0.4 and
0.6M⊙ stars, moons cannot orbit around their planets for
more than 5Gyr in any situation. These planets’ Hill spheres
are too small.
For 0.8 and 1.0M⊙ stars, moons around Earth-composition

planets can survive for more than 5Gyr if the conditions are
appropriate. One way that moons can survive more than 5Gyr
is to have the moon/planet mass ratio be greater than 0.09 and
the initial rotational period be 30 h rev−1 or slower. If we
restrict ourselves to relatively fast initial planetary rotational
rates, as might result from giant-impact origins for the moon,
(below the black line), the results are dramatic: if the stellar
mass is 0.8M⊙, it is almost impossible for 1 and 10M⊕ planets
to have a moon with a lifetime longer than 5Gyr. If the Earth–
Moon system formed at the habitable distance around a
0.8M⊙ star, then themoonwould have already hit the Earth or
been lost to interplanetary space. For 1.0M⊙ stellar mass,
small-mass planets easily have moons whose lifetimes are
longer than 5Gyr. On the other hand, large mass planets can
have moons whose lifetimes are longer than 5Gyr if their
initial rotational periods are sufficiently fast and moon/planet
mass ratios are sufficiently small.

Earth-like planets with low dissipation

In this section, we examine Earth-like planets again. However,
this time, we useQp=100 as might befit a planet with no ocean
or deep oceans. As we mentioned earlier, calculating Qp is not
easy.Mars has aQp value of 86 (Murray &Dermott 2000; Bills
et al. 2005) and tidal dissipation is driven by viscous dissipation
within the bulk of the planetary interior (Bills et al. 2005). Even
though Mars has a Qp value of 86, we cannot conclude that a

Fig. 3. The graph shows the lifetime of hypothetical moons in the
Sun–Earth system. The white vertical line represents the mass ratio
of the actual Moon and Earth. The black horizontal line is 10 h rev−1.
The real Earth–Moon situation is on the white line and may be below
the black line. Our result suggests that the lifetime of ourMoon is more
than 10Gyr.
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planet whose Qp is about 100 has the same dissipation
mechanism as Mars. However, the dissipation mechanism of
Mars is one possibility that a planet has a Qp value of about
100. Moreover, a deep ocean planet may have a Qp value of
about 100 (Sagan & Dermott 1982). An ocean planet is a type
of planet whose surface is completely covered by one to
hundreds of kilometres of water.
Figure 5 shows the lifetimes of the moons whose planets

have the same composition as that of Earth, haveQp=100 and
orbit in the habitable distance of 0.4–1.0M⊙ stars. For 0.8 and
1.0M⊙, moons can survive more than 10Gyr in most cases. If
we restrict ourselves to planets with relatively fast initial
planetary rotational rates (below the black line), then lifetimes
are commonly more than 10Gyr.
For 0.4 and 0.6M⊙, it is difficult for moons to have longer

lifetimes. If the star is 0.4M⊙, thenmoons cannot survive more

than 5Gyr. If the star’s mass is 0.6M⊙, then the moons’
lifetimes are at most 10 Gyr for the 1 and 10M⊕ cases.

Four typical compositions of planets with Qp=100

In subsections ‘Earth-like planets with high dissipation’
and ‘Earth-like planets with low dissipation’, we considered
planets with an Earth-like bulk composition. However, not all
rocky extrasolar planets will be Earth-like. In this section, we
examine four typical planet compositions: 50% ice–50% rock,
100% rock, Earth-like (67% rock, 33% iron) and 100% iron.
For uniformity, we assume that the mass of the parent star is
the same as that of the Sun.
Figure 6 shows the lifetimes of moons whose planets

are composed of the four considered compositions. We can
see that the lifetimes of moons depend on the composition of
the planets. Moons can easily survive for more than 10Gyr

Fig. 4. The figure shows our calculated lifetimes for moons whose planets have the same compositions as that of the Earth with high tidal
dissipation (Qp=10) and orbit at a habitable distance of 0.4−1.0M⊙ stars. The numbers in parentheses are the habitable distance for each star.
The circles represent the colour and relative size of the stars. The white vertical line represents the mass ratio of the actual Moon and Earth. The
black horizontal line is 10 h rev−1. For 0.4 and 0.6M⊙ stars, moons cannot orbit around their planets for more than 5 Gyr in any situation.
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around iron planets than ice–rock planets. Moons live longer
when their host planet is denser. For a fixed planetarymass, the
planet’s radius decreases with increasing density, as do tidal
torques. When the tidal torque is small, the system evolves
more slowly. Hence, a moon has a longer lifetime when its host
planet has higher density. For iron planets, moons can survive
more than 10Gyr in the majority of cases. On the other hand,
for an ice–rock planet, there is a relatively narrow range of
conditions under which a moon can survive for more than
10Gyr. Unlike iron planets, moons of ice–rock planets must
have very specific initial conditions to have more than 10 Gyr
lifetimes. The black vertical lines represent the estimated
minimum lunar mass required to stabilize planetary obliquity
as detailed in the subsection ‘Paremeters’. When the initial
rotational rate is fast, moons spiral out to greater distances.
Hence, moons have to be heavier by equation (3). On the other
hand, moons do not migrate outward very far when the initial
rotational rate is slow. Hence, moons can be lighter and still

stabilize obliquity. We include the minimum lunar masses only
in Fig. 6 because they have similar features in other cases.

The critical line

In the subsection ‘Earth-like planets with high dissipation’, we
showed that moons cannot survive more than 5Gyr around
0.4M⊙ and 0.6M⊙ stars provided that Qp is 10 and from the
subsection ‘Earth-like planets with low dissipation’, if the
stellar mass is 0.4M⊙, then the lifetimes of moons are no more
than 5Gyr provided that Qp is 100.
Therefore, there is a minimum stellar mass below which

moons cannot survive more than 5Gyr. For Qp=10, this
minimum stellar mass is between 0.6 and 0.8M⊙. For
Qp=100, it is between 0.4 and 0.6M⊙. In Section 4.3 ‘Four
typical compositions of planets with Qp=100’, we see that the
lifetime of the moon depends on the composition of the planet.
The minimum stellar mass for which moons cannot survive
more than 5Gyr also should depend on the composition of the

Fig. 5. The figure shows the lifetime of a hypothetical moon, whose planet is made of the same bulk composition as the Earth with low dissipation
(Qp=100) and which orbits at a habitable distance from a 0.4 to 1.0M⊙ star. For 0.4M⊙ stars and later, moons cannot orbit around their planets
for more than 5 Gyr in any situation.
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planet. Thus, our results allow us to draw a ‘critical line’ of
moon-stability, inward of which moons are unstable and
outside of which they can survive for astrobiologically relevant
timescales.
In Fig. 7, we show the critical lines not only for Earth-like

planets but also for the other planetary compositions such
as iron, Earth-like, rock and ice–rock. For Qp=10, we do not
consider ice–rock planets because no tidal dissipation mech-
anism proposed has been capable of generating enough tidal
friction on deep ocean planet to allow Qp=10.

We draw two conclusions from the locations of the critical
lines in Fig. 7. First, ifQp is lower, then the critical stellar mass
is higher. For small Qp, a star–planet–moon system loses
energy easily and the system evolves more quickly. Hence, the
critical stellar mass becomes larger.
Second, if the planetary density is higher, then the critical

mass is lower, and more moons are stable. The torque on the
planet due to the moon is proportional to the radius of the
planet to the fifth power. Therefore, because a higher density
indicates a smaller radius, the torque on the planet is lower, all

Fig. 6. This table shows the lifetimes of moons whose planets have different masses and compositions. We use Qp=100. We show the assumed
Love number, k2, and moment of inertia constant, α, in the Appendix. For the same composition, the heavier the mass of the planetis, the shorter
the lifetime of the moon. For the same mass, the denser the planet is, the longer the lifetime of the moon. The black vertical lines represent the
minimum lunar mass to stabilize planetary obliquity mentioned in the subsection ‘Parameters’.
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else being equal. The system then evolves slowly. Hence, the
critical mass becomes smaller.
Our results indicate that a rocky planet with Qp=10 at

the habitable distance cannot have a moon whose lifetime is
longer than 5Gyr if the stellar mass is less than 0.55M⊙. For
Qp=100, if the stellar mass is less than 0.42M⊙, the longevity
of moon cannot be longer than 5Gyr.

Kepler-62

So far, we have considered hypothetical star–planet–moon
systems. In this section, we explore the prospect for moons in a
real potentially habitable star–planet system.
Kepler-62, aK-type star with 0.64R⊙ and 0.69M⊙, is a five-

planet system. Two of these planets have 1.4 and 1.6 Earth
radii and orbit in the habitable zone: Kepler-62e and f. Table 1
shows the maximum masses, radii and semimajor axes of all
five planets in the Kepler-62 system. Theoretical models
suggest that Kepler-62e and f could be solid, either with a

rocky composition or composed of mostly solid water in their
bulk (Borucki et al. 2013). We calculate tidal decay lifetimes
for hypothetical moons of Kepler-62e and f using all four
possible planetary compositions as well as both Qp=10 and
100.
Figure 8 shows lifetimes of the hypothetical moons of

Kepler-62e and f. The white vertical lines represent the mass
ratio of our Moon and Kepler-62e and f. From the radii of
these planets, we can estimate planetary masses depending on
the compositions (Fortney et al. 2007). If the planets are made
of low-density material, such as ice, then their masses are about
that of Earth. If the planets are made of high-density material,
such as iron, then Kepler-62e and f are much more massive
than the Earth. Our result shows that Kepler-62e could host a
moon whose lifetime is longer than 5Gyr only if it is made of
iron and hasQp=100. On the other hand, many situations exist
for a moon of Kepler-62f to have a lifetime longer than 5Gyr.
Especially for Qp=100, moons of Kepler-62f can have at least
5 Gyr lifetime regardless of planet composition.

Discussion

Detecting rocky planets in habitable zones is of astrobiological
interest because life as we know it may be possible on such
planets. Kepler-62e and f are two known rocky planets in the
habitable zone. However, we show that it is hard for a moon of
Kepler-62e to survive more than 5Gyr (Fig. 8). Without a
‘long-lived’moon, a planet may not have a long-termmoderate
climate. Hence, life on Kepler-62e might not have enough time
to evolve complex life.
In contrast, it is relatively easy for Kepler-62f to have a

surviving moon. However, climate is sensitive. Stable planet-
ary obliquity helps to support but does not guarantee a
moderate climate. We would need more detailed calculations
of planetary obliquity evolution to test whether Kepler-62f has
a long-term moderate obliquity under various conditions. As
Kepler-62 is a newly discovered star–planet system, we do not
yet know if Kepler-62f has a suitable environment for life. We
need more information to draw a conclusion. From the
standpoint of its ability to retain a large moon for potential
climatic stability, Kepler-62f could possibly have appropriate
conditions for life.
We are interested in searching for rocky planets on which

complex life might exist. Here we define complex life to mean
multicellular creatures such as plants, animals and fungi. Our
research shows that the minimum stellar masses below which
moons cannot survive more than 5Gyr depends on the

Qp

M

Qp

M

M

Fig. 7. The graph shows 5 Gyr critical lines for assumed Qp=10 and
Qp=100. We do not consider ice–rock planets with Qp=10. For each
planet composition, if a star–planet–moon system is in the left side of
the line, then amoon cannot survivemore than 5 Gyr. If a star–planet–
moon system is on the right side of the line, then a moon may or may
not survivemore than 5Gyr, depending on the initial rotational period
and moon/planet mass ratio.

Table 1. (Borucki et al. 2013).

Planet of
Kepler-62

Maximum
mass (M⊕)

Radius
(R⊕)

Semimajor
axis (AU)

b <9 1.31 0.0553
c <4 0.54 0.0929
d <14 1.95 0.12
e <36 1.61 0.427
f <35 1.41 0.718
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composition of the planets (Fig. 7). For Qp=10, the minimum
values of such stellar masses are 0.55, 0.64 and 0.73M⊙ for
iron, Earth-like and rock, respectively. For Qp=100, these
masses are 0.42, 0.49, 0.56 and 0.63M⊙ for iron, Earth-like,
rock and ice–rock, respectively (Fig. 7). If a planet has a long-
lived moon, then that planet may have a long-term moderate
climate. Hence, the planet has a better chance to have complex
life on it. Estimating the timespan for life to evolve from single-
celled life forms to complex life formsis not easy. To estimate
this timespan, oxygen is the key material. It took about 2Gyr
before Earth’s atmosphere began to have oxygen molecules,
and life on the Earth evolved from single-celled life forms to
complex life forms because the concentration of oxygen be-
came high enough 600 million years ago (Ward & Brownlee

2000). For complex life on other planets, the situation may be
the same. First, there are no oxygen molecules in planetary
atmosphere. It may take a fewGyrs for planets to begin to have
oxygen molecules in their atmosphere. It may also take a few
Gyrs before the oxygen concentration became high enough to
support complex life. Therefore, it may take 4–5 Gyr timescale
for life on the other planets to evolve from simple life to
complex life.
On the basis of this reasoning that *5 Gyr is the time

necessary for biological evolution, star–planet–moon systems
whose host stars are less than 0.42M⊙ may not be good choice
to look for habitable planets that may have complex life
because in any moon/planet ratio and initial planetary rota-
tional rate moons cannot survive more than 5Gyr.

Fig. 8. The table shows the lifetimes of the hypothetical moons ofKepler-62e and f. The numbers in the parentheses next to planetary compositions
are the theoretical masses of Kepler-62e and f, respectively. The white vertical lines are the mass ratio of our Moon to Kepler-62e and f. The black
horizontal line is 10 h rev−1.
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For Qp=10, the maximum value of the critical line is 0.85M⊙
when the composition of the planet is rock. For Qp=100,
the maximum value of the critical line is 0.72M⊙ when
the composition of the planet is ice–rock. This means that
there are moon/planet mass ratio and initial planetary
rotational rates such that the lifetime of the moon can be
greater than 5Gyr regardless of the composition of the planet if
the stellar mass is greater than 0.85M⊙. Hence, planets whose
parent stars are more than 0.85M⊙ can easily retain large
moons. If the evolution of life on other planets is much faster
than in our case, then our analysis would need to be modified.
If for instance the required timespan for life to become
multicellular were 1 or 2 Gyr, then more worlds around less
massive stars could retain their large obliquity stabilizing
moons.

Conclusion

On our 4.6-billion-year-old Earth, life took about 3.8 billion
years to evolve from single-celled organisms to multicellular.
A long-term moderate climate is thought to be crucial for life
to evolve into complex forms. Stable obliquity of the Earth is
the key for such a scenario, as Earth’s obliquity is stabilized by
the Moon (Laskar et al. 1993). If other habitable planets
require moons to maintain obliquity, then the longevity of the
planet’s moon is also important for life to evolve there. We
assume that 5 billion years is long enough for life on other
planets to become multicellular. In this research, we studied
what conditions star–planet–moon systems require in order to
have moons with lifetimes longer than 5 billion years.
First, we consider Earth. According to the giant impact

hypothesis, the initial rotational period is from 5 to 8 h rev−1.
Under this condition, our result suggests that the Earth’sMoon
could survive more than 10Gyr. Even if the initial rotational
rate were as slow as 20 h rev−1, the Moon would survive more
than 5Gyr.
Next, we consider hypothetical Earth-like extrasolar

planets, with 0.1, 1.0 and 10.0M⊕, at the habitable distance
from *1.0M⊙ stars. These planets are assumed to have the
same composition as the Earth, which is 67% iron and 33%
rock, and similar tidal dissipationQp=10. For 0.4 and 0.6M⊙,
moons cannot orbit around their planets more than 5Gyr in
any situation. For 0.8 and 1.0M⊙, moons can survive more
than 5Gyr if the initial conditions are appropriate. For the case
where Qp=100 and the star has 0.4M⊙, it is impossible for
moons to have more than 5Gyr lifetimes. For 0.6M⊙ and
Qp=100, moons can survive more than 5Gyr if the conditions
are appropriate. For 1.0 and 0.8M⊙, moons can survive more
than 10 Gyr in most cases.
Not all extrasolar rocky planets are necessarily Earth-like in

composition.We consider five typical planet compositions that
are 50% ice–50% rock, 100% rock, Earth-like (67% rock, 33%
iron) and 100% iron. Our result indicates that the lifetime of the
moon depends on planet compositions and the moon has a
longer lifetime when its host planet has higher density, for the
same planet mass.

The results of subsections ‘Earth-like planets with
high dissipation’ and ‘Earth-like planets with low dissipation’
show that there is a minimum stellar mass below which
moons of habitable planets cannot survive for more than
5Gyr. We show the minimum stellar mass lines not only
for Earth-like planets but also for other planet compositions.
Our result shows that for Qp=10, the stellar mass should
be larger than 0.55M⊙ for a rocky planet in the habitable
distance to have a moon whose lifetime is longer than
5Gyr. For Qp=100, the stellar mass should be larger than
0.42M⊙.
Finally, we calculate tidal decay lifetimes for hypothetical

moons of Kepler-62e and f, which are in their star’s habitable
zone. We examine all four possible compositions as well as
Qp=10 and 100. Our result shows thatKepler-62e could have a
moon whose lifetime is longer than 5Gyr only if the planet is
made of iron andQp=100. On the other hand, there are a lot of
situations in which Kepler-62f could have a moon whose
lifetime is longer than 5Gyr. Especially for Qp=100, Kepler-
62f could have a 5-Gyr-lifetime-moon for a variety of
planetary compositions.
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Appendix
Love numbers and moment of inertia constants

In tidal theory, the Love number, k2, and the moment of
inertia constant, α, are important numbers. These numbers
depend on the planet’s mass and composition. The Love
number is a measure of the tidal distortion of a planet in
response to the gravitational pull of nearby bodies. This
number can be between 0 and 1.5. The Love number is 0 and
1.5 if a planet is a completely rigid body and made of a
strengthless fluid, respectively. The moment of inertia
constant tells us the mass distribution within a planet. For a
uniform mass distribution planet, the moment of inertia
constant is 0.4. The Earth’s moment of inertia constant is
0.33. This is due to the fact that the Earth has a dense inner core
surrounded by a less dense outer core and an even less dense
mantle.
Table 2 shows the Love numbers and the moment of inertia

constants that we used in this study. The structure of spherical
symmetric planets in hydrostatic equilibrium obeys the follow-
ing relationships (Fortney et al. 2007). Equations (4) and (5)
are called mass continuity and hydrostatic equilibrium,
respectively:

∂r
∂m

= 1
4πr2ρ

, (4)

∂P
∂m

= − Gm
4πr4

, (5)
ρ = ρ(P), (6)
where r is the radius of a mass shell, m is the mass of a given
shell, ρ is the local mass density, P is the pressure and G is the
gravitational constant. Density–pressure relationships, equa-
tion (6), depend on materials. Figure 1 of Fortney et al. (2007)
is the graph of density–pressure relationships for iron, rock
and water ice. We interpolate density–pressure relationships
for iron, rock and water ice from Fig. 1 of Fortney et al. (2007).
We numerically integrate equations (4)–(6) starting at the
planetary centre conditions r(0)=(3/4πρ0)

1/3 andP(0)=Pcentral,

where ρ0 is the density at the centre and Pcentral is a chosen
central pressure such that P(M )=0, where M is the planetary
mass. To find the moment of inertia constant, we calculate:

2
3

∫M
0
r2dm

MR2 , (7)

where R= r(M ) is the planetary radius.
The Love number, k2, is defined by Murray & Dermott

(2000):

k2 = 3/2
1+ μ̃

, (8)

where μ̃ is the effective rigidity. The effective rigidity is given
by Murray & Dermott (2000):

μ̃ = 19
2

μ

ρgsR
, (9)

where μ is rigidity, gs is the surface gravity andR is the radius of
the planet. The planetary radii are provided in Fortney et al.
(2007). We obtain the rigidities of ice, rock and the Earth from
Dermott (2000). We choose the rigidity of ice–rock is the
average of ice and rock, and iron is the linear extension of rock
and is Earth-like.
Equation (9) was derived for the assumption of a uniform

interior of a planet. For a non-uniform interior, equation (9)
will only give us an approximation of the correct value. The
planet’s rigidity depends on its internal structure. The rigidity
of non-uniform planet may not be just the average of the
rigidities of two materials; however, we do not have enough
knowledge to estimate the rigidity and effective rigidity for
non-uniform interior planets. Therefore, equation (9) is a
reasonable way to estimate the effective rigidity for a non-
uniform interior planet. As our knowledge of rocky exoplanets
matures, more sophisticated approaches like that of Moore &
Schubert (2000) may be warranted.

The minimum lunar mass

The minimum lunar mass required to stabilize a planet’s
obliquity is important but complicated. Here, we calculate

Table 2. The table shows the Love numbers and the moment
of inertia constants that we used in this study. The number
below each planetary composition is rigidity of the planet.

Planet compositions Planetary mass (M⊕) Kepler-62

0.1 1 10 e f
Ice–rock (50–50%) α 0.313 0.314 0.302 0.312 0.313
2.7×1010 (Nm−2) k2 0.085 0.426 1.169 0.614 0.456
Rock (100%) α 0.397 0.383 0.349 0.365 0.372
5.0×1010 (Nm−2) k2 0.119 0.520 1.241 0.862 0.695
Earth-like (67–33%) α 0.335 0.318 0.273 0.295 0.302
1.4×1011 (Nm−2) k2 0.059 0.300 1.056 0.831 0.635
Iron (100%) α 0.386 0.367 0.343 0.335 0.340
3.4×1011 (Nm−2) k2 0.068 0.352 1.137 1.366 1.250
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an estimate of the minimum lunar mass necessary to affect a
planet’s axial precession. In order to affect planetary obliquity,
the torque on a planet due from its moon must be comparable
to that due to a star. The torque on the planet due to the moon
τp−m is given by Goldreich & Soter (1966); Murray &Dermott
(2000); Barnes & O’Brien (2002) in Chapter 4:

τp−m = − 3
2

k2pGM2
mR

5
p

Qpa6m
, (10)

where k2p is the tidal Love number of the planet, G is the
gravitational constant, Rp is the radius of the planet, Mm

is the mass of the moon and am is the semimajor axis of the
moon’s orbit. Similarly, the torque on the planet due to the
star τp− s is:

τp−s = − 3
2

k2pGM2
s R

5
p

Qpa6p
, (11)

whereMs is the mass of the star, ap is the semimajor axis of the
planet’s orbit. Set |τp−m|> |τp− s| and simplify. We have:

Mm . Ms
am
ap

( )3

. (12)

Let β be a constant such that

am = βRH (13)

where RH is the radius of the Hill sphere (de Pater & Lissauer
2001):

RH = ap
Mp

3Ms

( )1/3

. (14)

Simplify equation (12) using equations (13) and (14).
We have

Mm

Mp
.

β3

3
. (15)
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