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ABSTRACT

We fit the Kepler photometric light curve of the KOI-368 system using an oblate, gravity-darkened stellar model in
order to constrain its spin–orbit alignment. We find that the system is relatively well-aligned with a sky-projected
spin–orbit alignment of λ = 10◦±2◦, a stellar obliquity of ψ = 3◦±7◦, and a true spin–orbit alignment of ϕ = 11◦±3◦.
Although our measurement differs significantly from zero, the low value for ϕ is consistent with spin–orbit
alignment. We also measure various transit parameters of the KOI-368 system: RKOI-368 = 2.28 ± 0.02 R�,
Rp = 1.83 ± 0.02 Rjup, and i = 89.◦221 ± 0.◦013. This work shows that our gravity-darkened model can constrain
long-period, well-aligned planets and M-class stars orbiting fast-rotators, allowing for measurement of a new
subcategory of transiting bodies.
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1. INTRODUCTION

Main-sequence stars earlier than spectral type ∼F6 are
expected to rotate rapidly due to their radiative exteriors (Barnes
2009). This induces the stellar figure to become oblate, which
causes the star’s photosphere to be up to several thousand
kelvin hotter at the poles than at the equator, leading to higher
polar luminosity. This effect, called gravity darkening, was
first predicted by von Zeipel (1924). Gravity darkening causes
asymmetric light curves for misaligned transiting candidates
(Barnes 2009), and has been used to constrain spin–orbit
alignments for significantly misaligned candidates (Barnes et al.
2011). This work will show that this method can also constrain
spin–orbit aligned systems with relatively symmetric transit
light curves for eclipsing objects.

The measurement of the angle between the inclination of
a planet’s orbit normal and parent star’s spin axis, spin–orbit
alignment (ϕ), can tell us more about the formation and
evolution of that system. Evidence shows that a wide variety
of planetary system types exist, including many short- and
long-period spin–orbit misaligned planets (Wright et al. 2011;
Pont et al. 2010; Triaud et al. 2009; Guenther et al. 2012).2

We can use constrained spin–orbit alignments to compare
planetary formation of extrasolar planets to that in our own
planetary system. We propose an improved method for finding
the spin–orbit alignment based off of Barnes et al. (2011),
allowing for constraint of previously unmeasurable systems.

There are several existing methods for calculating the stel-
lar obliquity and the sky-projected spin–orbit alignment, in-
cluding the Rossiter–McLaughlin effect, stroboscopic starspots,
Doppler tomography, asteroseismic determination of obliquity
and gravity darkening. The Rossiter–McLaughlin technique
uses Doppler shifts in radial velocity measurements during the
eclipse of the primary star (Rossiter 1924; McLaughlin 1924).
Stroboscopic starspots can be used to constrain an aligned sys-
tem because the planet will cross the same starspot each time the

1 These authors contributed equally to this work.
2 A complete list of spin–orbit misaligned planets is available at
http://www.physics.mcmaster.ca/∼rheller/.

planet transits. However, if the system is misaligned, the planet
will cross the starspot very infrequently (Désert et al. 2011),
and the method will fall short. Doppler tomography is able to
achieve similar results to those possible from gravity darken-
ing, but this method needs high signal-to-noise radial velocity
follow up measurements (Gandolfi et al. 2012). Asteroseismic
determination of obliquity can constrain the obliquity, but not
the projected spin–orbit alignment (Chaplin et al. 2013; Van
Eylen et al. 2014), so other measurements are required to find
the spin–orbit alignment.

Gravity darkening constrains both the stellar obliquity and
the sky-projected spin–orbit alignment simultaneously. Barnes
et al. (2011) used gravity darkening to establish the spin–orbit
misalignment in the Kepler Object of Interest number 13 (KOI-
13) system. Hirano et al. (2012, p. 5) state that “For such rapid
rotators, asymmetries in the transit light curve may be used to
determine the parameters only if the spin–orbit angle is large”;
however, we show here that we can constrain such rapid rotating
systems, even if the spin–orbit angle is small.

In this paper, we show that our gravity-darkened model
can constrain long-period, well-aligned planets and M-class
stars orbiting fast-rotators, allowing for measurement of a new
subcategory of transiting bodies. In Section 2, we describe our
steps for data collection and preparation. In Section 3, we outline
the gravity-darkened model that we use to fit the Kepler transit
curve, and in Section 4 we list our constrained parameters for
the KOI-368 system. We discuss implications of this work in
Section 5. In Section 6 we compare our results to Zhou & Huang
(2013). This work can be applied to the formation and evolution
of intermediate-period planets orbiting fast-rotating stars and
eclipsing binary systems; however, actual application of these
concepts is beyond the scope of this paper.

2. PREPARING THE KOI-368.01 LIGHT CURVE

Borucki et al. (2011) first noted KOI-368.01 as a transiting
planet candidate. This KOI is particularly interesting because
of the parent star, KOI-368’s, early spectral type (Teff =
9257 K); because the star’s brightness (mKepler = 11.375)
leads to a high total signal-to-noise ratio (S/N) for the transit

1

http://dx.doi.org/10.1088/0004-637X/786/2/131
http://www.physics.mcmaster.ca/~rheller/.


The Astrophysical Journal, 786:131 (5pp), 2014 May 10 Ahlers, Seubert, & Barnes

Table 1
Transit Parameters Measured by the Mikulski Archive for

Space Telescopes for the KOI-368.01 System

Parameter Previously
Reported Value

T0 130.6345 days ± 0.00015
Period 110.32160 days ± 0.00005
a 0.581 AU
Teq 754 K
Duration 13.32 hr
Depth 7270 ppm

d
RKOI-368

51.19 ± 0.14
S/N 1658.2
Teff 9257 K
mKepler 11.375
log(g) 4.13
v sin(i)a 90 km s−1

Notes. The time of transit center is denoted as T0, the semi
major axis of orbit is denoted as a, the equilibrium surface
temperature of the planet is denoted as Teq, the duration is
the transit duration, the depth is transit depth at center of
transit, the ratio of the planet–star separation at the time of
transit to the stellar radius is denoted by d/RKOI-368, S/N
is the signal-to-noise ratio, the stellar effective temperature
is denoted by Teff , and the log of stellar surface gravity is
denoted by log(g).
a From the Kepler Community Follow-up Observing Pro-
gram, v sin(i) is the projected stellar rotational velocity.

(S/N = 1866.4); and because of the relatively long orbital period
for its companion of 110 days. We summarize the original star
and planet candidate parameters in Table 1.

More recently, follow-up spectroscopy of KOI-368 from the
Kepler Community Follow-up Observation Program (CFOP)
showed a high degree of rotational broadening of the stel-
lar absorption lines. That broadening allows measurement of
the star’s projected rotational velocity, conventionally denoted
v sin(i) (v cos(ψ) using our parameter definitions, where ψ is
the star’s obliquity relative to the plane of the sky). The CFOP-
measured v sin(i) value is 90 km s−1, as measured by the TRES
Echelle Spectrograph of the Smithsonian Astrophysical Obser-
vatory. Hence, KOI-368 is a rapid rotator, and may therefore
show sufficient gravity darkening to allow us to measure the
relative alignment angle ϕ between the stellar rotation pole and
the orbit normal.

To do so, we first acquire SAP_FLUX photometric timeseries
for KOI-368 from the Mikulski Archive for Space Telescopes
(MAST) Kepler database, including both short-cadence (60 s
integration time) and long-cadence (30 minute integration time)
photometry. We use Kepler Quarter 0 (Q0) through Quarter 16
(Q16) public data, totaling 67,601 short-cadence and 60,491
long-cadence data points. During Q0–Q7 and Q10–Q16 the
spacecraft only used long cadence for KOI-368, but during Q8
and Q9 it used short- and long-cadence mode. When using
both the long-cadence and available short-cadence data from
Q0–Q16 we keep track of the specific integration time used for
each data point.

Transiting planet candidate KOI-368.01 shows a total of 11
long-cadence and 2 short-cadence transits within the 17 quarters.
One transit is missing because it is in a data gap. This missing
transit is the eighth in the sequence.

We performed several steps to prepare both the short- and
long-cadence data for fitting. We first normalize each quarter’s
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Figure 1. This figure shows a boxcar-filtered version of all of the KOI-368
photometry that we use in this paper, combined into a single data set before
period folding. The vertical extent of each data point indicates its error bar.
The noisier data in 2011 correspond to short-cadence observations, which use a
time integration of 1 minute rather than the 30 minutes used in the long-cadence
observations. The typical photometric precision of the long-cadence data is
4.0 × 10−5, and for the short-cadence data is 2.3 × 10−4.

flux by dividing each point by its quarter’s median value.
We then glue all short-cadence quarters together and all long-
cadence quarters together, and use a median boxcar filter with
a period of triple the transit duration (42 hr) to correct for long-
term instrument response variations. We show the full processed
Q0–Q16 timeseries in Figure 1.

We fold the short- and long-cadence data sets on their 110 day
orbit periods (Borucki et al. 2011) and crop to a window 26.6 hr
long centered on the time of inferior conjunction to arrive at a
light curve for fitting. We then average the long-cadence data
into 30 minute bins and the short-cadence data into 5 minute
bins, and combine the two data sets into a single light curve. We
perform this binning process to increase computational time; we
compared an analytical fit of the binned versus unbinned data
to ensure no vital information was lost. We then clean the data
to remove any remaining outliers, and begin the fitting process.

3. MODEL

We model the KOI-368 transit using an algorithm developed
by Barnes & Fortney (2003) and modified to treat rapidly
rotating, oblate stars (Barnes 2009). The asymmetry of the non-
uniformity in flux coming from a gravity-darkened stellar disk
drives the use of explicit numerical integrals to compute eclipsed
flux rather than an analytical expression (Mandel & Agol 2002).

Our transitfitter program (Barnes & Fortney 2003;
Barnes 2009) computes this integral for the stellar flux F in
polar coordinates R (the projected distance from the center of
the star) and θ (azimuthal angle counterclockwise from right)
as

F = 1 −
∫ RKOI-368

0

∫ 2π

0 I (r, θ )Γ(r, θ )rdθdr∫ RKOI-368

0

∫ 2π

0 I (r, θ )rdθdr
, (1)

where I (r, θ ) is the flux per unit area of the particular (r, θ )
location on the stellar disk, and Γ(r, θ ) is a function that denotes
the location of the transiting object by yielding 1 for blocked
locations and 0 everywhere else. Functionally we evaluate the
θ portion of the integral by finding both limbs of the planet at
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Table 2
Transit Parameters for the KOI-368 System

Parameter Best-fit Values

χ2
reduced 1.41

RKOI-368 2.28 ± .02 R�
Rp 1.83 ± 0.02RJup

Rp
RKOI-368

0.0823
i 89.◦221 ± 0.◦013
b 0.697
c1 0.49
T0 7520550 ± 40 s
F0 1.000024 ± 5 × 10−6 s
λ 10◦ ± 2◦
ψ 3◦ ± 7◦
ϕ 11◦ ± 3◦
Prot 30.73 hr
fKOI-368 0.0275

Notes. Rp is in units of equatorial Jupiter radii at one bar level.
The time at the center of transit, T0, is measured in seconds
after BJD 2454900, after Borucki et al. (2011). Throughout
the fitting process, the limb darkening coefficient and gravity
darkening parameter were held constant at c1 = 0.49 and
β = 0.25 to remove further degeneracies from our model
(see Figure 4).

distance r by use of a root-finding routine and then integrating
I (r, θ ) between these known limb locations.

We fit this model to the Kepler data using a Levenberg–
Marquardt χ2 minimization algorithm (Press et al. 2007).
Because of the need for explicit numerical integrals, each fit
takes several days to complete.

4. RESULTS

We measured seven different parameters for KOI-368 by
fitting its Kepler transit light curve. We measured the stellar
and planet radii (RKOI-368 and Rp, respectively), the inclination
of the orbit relative to the plane of the sky, i, the time of inferior
conjunction, T0, the out-of-transit normalized stellar flux, F0, the
sky-projected spin–orbit alignment, λ, and the stellar obliquity,
ψ , measured as the tilt of the stellar north pole away from the
Kepler field of view.

We also derive three parameters based off of our best-fit
values. We calculated the impact parameter, b, the stellar rotation
period, Prot, and the stellar oblateness fKOI-368. The impact
parameter was derived using the orbital inclination angle. The
stellar rotation period was derived using our assumed vsin(i)
value and the stellar obliquity. The stellar oblateness was derived
from RKOI-368 and Prot. We held our limb darkening parameter
c1 constant at 0.49, as explained in Section 5. We list the best-fit
and derived values along with their 1σ uncertainties in Table 2.

We display the orbital inclination i, sky-projected spin–orbit
alignment λ, and stellar obliquity ψ in Figure 2. With the stellar
obliquity and sky-projected spin–orbit alignment constrained,
we calculated the spin–orbit alignment using

cos (ϕ) = sin (ψ) cos (i) + cos (ψ) sin (i) cos (λ) (2)

(Barnes et al. 2011). We calculated its uncertainty using a Monte
Carlo numeric error propagator.

The fitted data are plotted in Figure 3, along with the residuals.
While the light curve appears relatively symmetric, we know that
the star is rotating with a v sin(i) = 90 km s−1, which implies
that there must be some gravity darkening occurring. It does not
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Figure 2. Definitions of our angular geometric quantities. The planet’s orbital
inclination is i. The planet’s projected spin–orbit angle is λ, as measured
clockwise from stellar east. The coordinate system axes are provided, where
Y is the direction of the observer’s view. The stellar obliquity, ψ , is measured
as the angle that the north stellar pole is tilted away from the plane of Kepler’s
view.

(A color version of this figure is available in the online journal.)
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Figure 3. Photometry and fits for the 2013 KOI-368 light curve. We plot the data
on top with the gravity-darkened fit in blue. The residuals of this fit are shown
below. We recognize a slight asymmetry in the light curve, as first identified
by Zhou & Huang (2013). Our gravity-darkened model does a reasonable
job of reproducing ingress and egress at the bottom of the light curve. The
residuals from the fit are shown at the bottom. The gravity-darkened model does
a reasonable job of reproducing the ingress and egress at the bottom of the light
curve.

(A color version of this figure is available in the online journal.)
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Figure 4. Four possible transit geometries of the KOI-368 system. We enhance
the effects of gravity darkening and limb darkening to make the varying surface
luminosity more evident. All four scenarios produce identical transit light
curves; therefore, these geometries are perfectly degenerate. This arises from
the inability to differentiate between prograde and retrograde values for the sky-
projected spin–orbit alignment (λ) and the stellar obliquity (ψ). Conservatively,
we assume prograde values with the north pole tilted toward our point of view
(upper left image).

(A color version of this figure is available in the online journal.)

show in the light curve due to the transit geometry, which we
demonstrate in Figure 4.

5. DISCUSSION

KOI-368.01 has the longest period of any candidate with
measured spin–orbit alignment, and is second overall next to
HD 80606 (Pont et al. 2009). Our results show that KOI-368.01
has the longest orbit that has been proven to be spin–orbit
aligned (Albrecht et al. 2012), as HD 80606 is misaligned. This
work opens up a whole new population of planets that could
be studied via gravity darkening. In particular, we provide a
method to determine the possible ways that candidates such as
these evolved. It could be that KOI-368 formed in its present
location, or it could have migrated inward by some mechanism,
while its spin–orbit alignment was left unaffected. This work
is the first step in establishing a trend for the evolution and
formation of late-type stars, giant planets, and brown dwarfs
orbiting hot stars.

Based on how large the RKOI-368 and Rp values are, it is
also possible that our fit is assuming that KOI-368.01 was
transiting during apoapsis, thus assuming that the candidate
was having to transit across a larger star in order to still hold
the vsin(i) at a constant of 90 km s−1. We can compensate
for this by assuming it an eccentric planet. For instance, with
an eccentricity of 0.1, we see an RKOI-368 = 2.4864 R� and
Rp = 2.0435 RJup. When we assume an eccentricity of 0.3, we
see an RKOI-368 = 3.0633 and Rp = 2.5176. Finally, if we were
to assume an eccentricity of 0.5, we see an RKOI-368 = 3.1374
and Rp = 2.4363. However, for our best-fit model, we assumed
negligible eccentricity and assumed the transiting companion to
be an M-dwarf star, following Zhou & Huang (2013).

We represented the stellar limb darkening with a single limb
darkening parameter, c1, equal to the sum of the two quadratic
limb darkening parameters such that c1 = u1 + u2, following

Brown et al. (2001). In our best-fit model, we held c1 constant
in order to obtain an accurate measure of the stellar obliquity
because if c1 were allowed to float, the degeneracy between
it and the stellar obliquity would cause the stellar obliquity’s
uncertainty to greatly increase (Barnes 2009). By holding c1
constant, we were able to better constrain the stellar obliquity.
While fitting, we used assumed c1 values that varied from 0.43 to
0.56 and found that the best-fit values for the floating parameters
varied by less than 1σ . We found that our reduced χ2 value was
lowest at c2

1 ≈ 0.50, and thus chose c1 = 0.49 based off of the
similarity between the stellar radii and temperatures of KOI-386
and KOI-13 (Barnes et al. 2011).

We intend to use this technique to survey other systems
with intermediate period orbits, and attempt to constrain their
spin–orbit alignments. This will allow us to see if KOI-368 is
a good model for these types of systems, or if it is atypical. As
future work we will expand the types of systems we analyze,
such as smaller radius exoplanets and multiplanetary systems.

6. COMPARISON TO ZHOU & HUANG (2013)

Zhou & Huang (2013) recently published constraints for the
KOI-368 system using a gravity-darkened model, based off of
Barnes (2009). However, Zhou & Huang (2013) claims that the
KOI-368 system is significantly misaligned (ϕ = 69+9◦

−10◦ ), which
is contrary to our result that the system is close to alignment.

This discrepancy may arise from differences between the
Zhou & Huang (2013) model and ours. Most notably is our
handling of the gravity darkening parameter (β), which relates
the effective local gravity to the effective local temperature of a
star by Maeder (2009):

T = Tpole

(
g

gpole

)β

. (3)

β represents the strength of the stellar gravity darkening: higher
β values allow for larger variations in luminosity between the
pole and equator given the same stellar parameters. We use β =
0.25 for our fit, which represents blackbody radiation. Zhou &
Huang (2013) used a dynamic fit for β that arrived at β = 0.05,
removing virtually all gravity darkening effects. With such a
low β value, the stellar obliquity and sky-projected alignment
can drastically vary without causing significant asymmetry in a
best-fit model.

The sky-projected alignment, stellar obliquity, limb darken-
ing coefficient, and the gravity darkening parameter are inter-
dependent parameters. Kepler photometric data of the KOI-368
system are not sufficiently precise to allow for constraint of all
four, so we held β constant at 0.25 and c1 constant at 0.49 during
the fitting process.

To show the effects of β on the fit, we also held β constant
at other values and constrained λ and ψ , as shown in Figure 5.
This figure shows that the sky-projected alignment and stellar
obliquity do not vary extensively except at very low values of β.
Even at β = 0.05, we find a relatively aligned system, which is
fundamentally different from Zhou & Huang (2013) due to c1.

Our assumption of β = 0.25 is based off of Barnes et al.
(2011), which compares the best-fit model of KOI-13 using the
theoretical value of β = 0.25 (von Zeipel 1924) and the ex-
perimental value of β = 0.19 (Monnier et al. 2007). Barnes
et al. (2011) found that the best-fit values varied less than 1σ
between the two β values. Barnes et al. (2011) and Figure 5
suggest that our gravity-darkened model is not significantly var-
ied for small changes in β. We used the theoretical β value,
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Figure 5. This figure shows the β dependency of the sky-projected align-
ment (in red) and of the stellar obliquity (in blue). Doppler tomography of
KOI-368 will determine β, which will allow for better constraint of the
spin–orbit alignment. The error bars were determined using constant χ2 bound-
aries as confidence limits.

(A color version of this figure is available in the online journal.)

as there currently is no experimental β value for the KOI-368
system. A better determination of the star’s mass could help
to constrain β empirically in the future. Various outside mea-
surements would also help to constrain the system, such as a
Rossiter–Mclaughlin measurement of the sky-projected align-
ment, and an asteroseismic determination of the stellar obliquity.

The Zhou & Huang dynamical fit for both limb darkening
and gravity darkening parameter β represents an overfit to
the Kepler data for KOI-368. The resulting fit is unphysical
and unreproducible given that Zhou & Huang do not report
the limb darkening parameters that they used. Barnes (2009)
showed that transits of an aligned planet around a gravity-
darkened star lead to anomalies in the best-fit limb darkening
coefficients—particularly the quadratic coefficient u2.

Our fit is grounded in the Barnes (2009) model, which has
been shown to agree with Doppler tomography in the case
of KOI-13 (Barnes et al. 2011; Johnson 2013). Barnes et al.
(2011) constrained the spin–orbit alignment to λ = 24◦ ± 4◦,
and Johnson (2013) constrained it to be λ = 21.◦3 ± 0.◦2.
With an outside confirmation of our model, we think that our
measurement of KOI-368 is robust. Future Doppler tomography
of KOI-368 could confirm our result.

7. CONCLUSION

By fitting all available short- and long-cadence Kepler
photometry for KOI-368.01, we measured a sky-projected
spin–orbit alignment of λ = 10◦ ± 2◦ and a stellar obliquity
of ψ = 3◦ ± 7◦. While the limb darkening parameter is as-
sumed to be c1 = 0.49 (Barnes et al. 2011), other fits using
different assumed c1 limb darkening values while holding β
constant show that the spin–orbit angle, ϕ = 11◦ ± 3◦, is not
substantially affected by plausible limb-darkening variations.

The gravity-darkened model allows for determination of
the true spin–orbit alignment of a system, not just its

sky-projected spin–orbit alignment. This work presents one of
the first extrasolar systems to have its spin–orbit alignment
constrained (Winn et al. 2007; Sanchis-Ojeda & Winn 2011;
Nutzman et al. 2011). The spin–orbit alignment of KOI-368.01
does not suggest that bodies orbiting more massive stars are
more likely to be spin–orbit misaligned, contrary to Winn et al.
(2010).

We show that KOI-368.01 is well aligned with a spin–orbit
alignment ϕ = 11◦ ± 3◦. KOI-368 is a rapidly rotating
star, and therefore the light curve displays the effects of
gravity darkening. However, because our system is well aligned,
KOI-368.01 transits across lines of equal brightness; therefore,
the light curve displays only nominal asymmetry.

This system could have formed via one of several mecha-
nisms. The most likely is fragmentation, in which the protostel-
lar disk fragments due to rotational instabilities. This mechanism
allows for spin–orbit aligned binary systems of less than 1 AU
(Bate et al. 2002). The formation of close-in binary systems is
still somewhat unexplained (Bate et al. 2002; White & Ghez
2001); the ability to constrain the spin–orbit alignment of such
systems will contribute to understanding them.

The unique nature of the KOI-368 system allows for new
insight in studying photometric light curves. With the high
precision of Kepler photometry, we are for the first time
able to constrain systems such as these, which provides new
understanding of the formation of extrasolar systems. The
knowledge we gained from this system will be applicable to
a wide variety of transiting objects in the future.
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